f(R) Theories of Gravity with Non-minimal Curvature-Matter Coupling

f(R) theories of gravity with non-minimal curvature-matter coupling

Implications

Energy conditions and stability

Orfeu Bertolami

Instituto Superior Técnico

Departamento de Física (http://web.ist.utl.pt/orfeu.bertolami/homeorfeu.html)

Invisible Universe International Conference

29 June -03 July, 2009,

UNESCO, Paris

General Relativity ($\gamma = \beta = 1$)

• GR has survived all tests so far...

[C. Will, gr-qc/0510072] [O.B., J. Páramos, S. Turyshev, gr-qc/0602016]

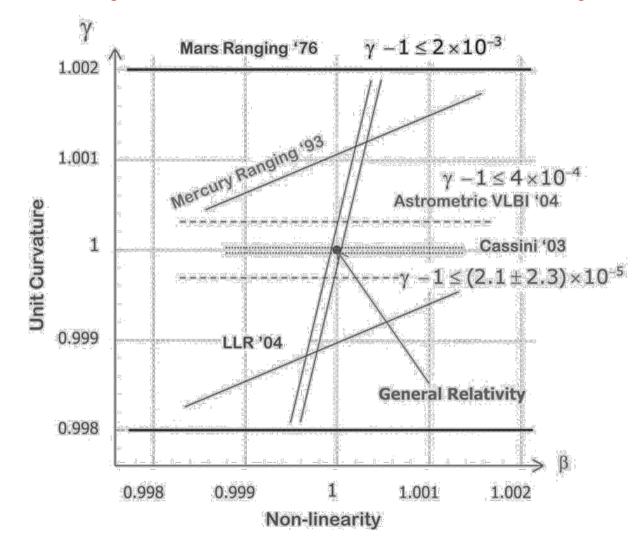
• Parametrized Post-Newtonian Formalism (U-gravitational potential, v_i velocity)

$$g_{00} = -1 + 2U - 2\beta U^2 + ..., \quad g_{ij} = (1 + 2\gamma U)\delta_{ij} + ..., \quad g_{0i} = -\frac{1}{2}(4\gamma + 3)v_i + ...$$

Local (solar system) tests

Mercury's perihelion shift: $|2\gamma - \beta - 1| < 3 \times 10^{-3}$ [Shapiro 1990]Lunar Laser Ranging: $4\beta - \gamma - 3 = (4.4 \pm 4.5) \times 10^{-4}$ [Williams, Turyshev, Boggs 2004]LBLI light deflection: $|\gamma - 1| < 4 \times 10^{-4}$ [Eubanks et al. 1997]Cassini Experiment: $\gamma - 1 = (2.1 \pm 2.3) \times 10^{-5}$ [Bertotti, less, Tortora 2003]

Summary of the General Relativity Tests



Cosmological Tests of General Relativity

- Outstanding challenges (GR + Quantum Field Theory)
 - Singularity Problem
 - Cosmological Constant Problem
 - Underlying particle physics theory for Inflation
- Theory provides in the context of the Big Bang model an impressive picture of the history of the Universe
 - Nucleosynthesis ($N_v < 4$, $\Omega_B h^2 = 0.023 \pm 0.001$)
 - Cosmic Microwave Background Radiation
 - Large Scale Structure
 - Gravitational lensing
 - ...
- Required entities (missing links):
 - Dark Matter
 - Dark Energy

Dark Matter

• Evidence:

Flatness of the rotation curve of galaxies Large scale structure Gravitational lensing N-body simulations and comparison with observations Merging galaxy cluster 1E 0657-56 Massive Clusters Collision CI 0024+17 Dark core of the cluster A520

Cold Dark Matter (CDM) Model

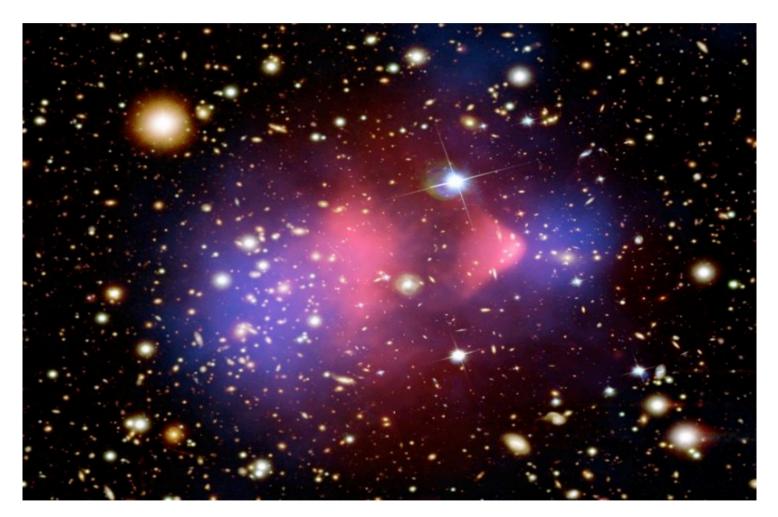
Weakly interacting non-relativistic massive particle at decoupling

• Candidates:

Neutralinos (SUSY WIMPS), axions, scalar fields, self-interacting scalar particles (adamastores), *etc.*

Merging Galaxy Cluster 1E 0657-56

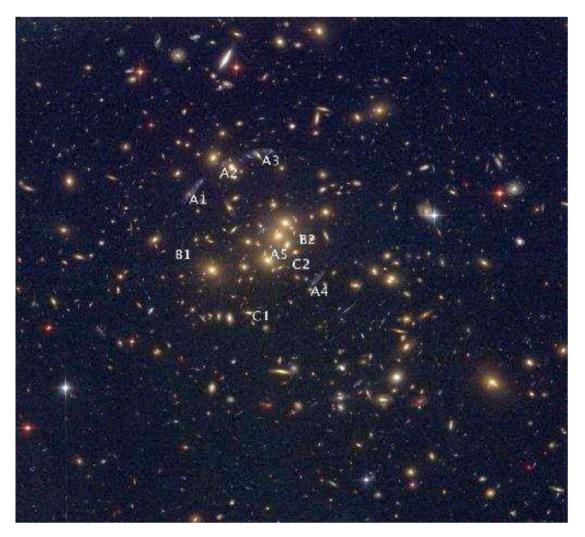
[Clowe et al., astro-ph/0608407]



"Bullet" Cluster

Massive Clusters Collision Cl 0024+17

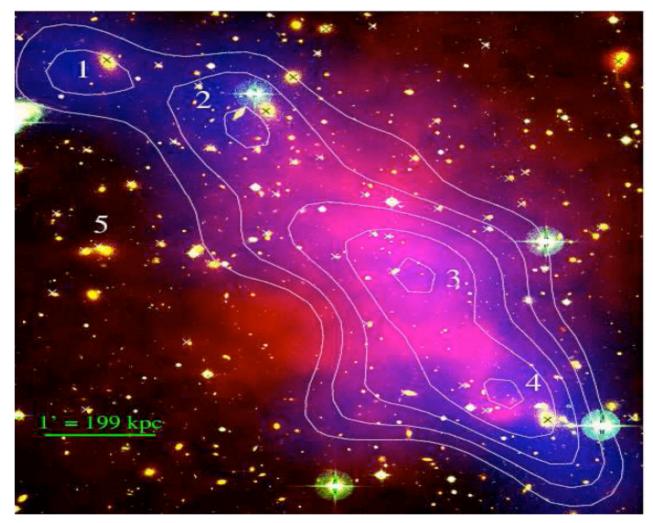
[Jee et al., astro-ph/0705.2171]



Ring-like dark matter structure

Dark core of the Abell 520

[Mahdavi et al., 0706.3048(astro-ph)]



Collisional dark matter ?

Self-Interacting Dark Matter

[Spergel, Steinhardt 2000]

Motivation: "cuspy core" problem

Model:
$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi)^2 - \frac{1}{2} m_{\phi}^2 \phi^2 - \frac{g}{4!} \phi^4 + g' v \phi^2 h$$

Higgs decay width

$$\Gamma(h \to \phi \phi) = 5.23 \left(\frac{m_h}{115 \text{ GeV}}\right)^{-1} {g'}^2 \text{ GeV}$$

[Bento, O.B., Rosenfeld, Teodoro 2000] [Siveira, Zee 1988] [Bento, O.B., Rosenfeld 2001]

Unified model for dark energy – dark matter: $g' \Phi^2 H^2$

[O.B., Rosenfeld 2008]

Dark Energy

• Evidence:

Dimming of type Ia Supernovae with z > 0.35Accelerated expansion (negative deceleration parameter): $q_0 = -\frac{\ddot{a}a}{\dot{a}^2} \le -0.47$ [Perlmutter et al. 1998; Riess et al. 1998, ...]

• Homogeneous and isotropic expanding geometry Driven by the vacuum energy density Ω_{Λ} and matter density Ω_{M}

Equation of state: $p = \omega \rho$ $\omega \le 1$

• Friedmann and Raychaudhuri equations imply:

$$q_0 = \frac{1}{2} (3\omega + 1) \Omega_m - \Omega_\Lambda$$

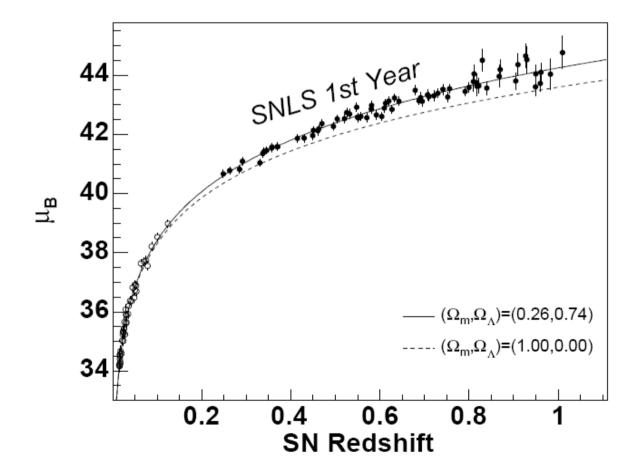
 $q_0 < 0$ suggests an invisible smooth energy distribution

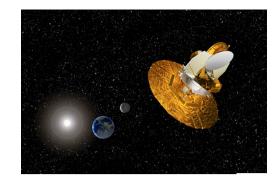
Candidates:

Cosmological constant, quintessence, more complex equations of state, etc.

Supernova Legacy Survey (SNLS)

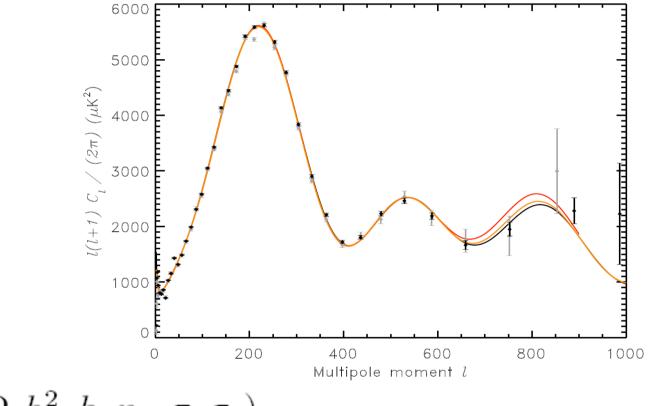
[Astier et al., astro-ph/0510447]





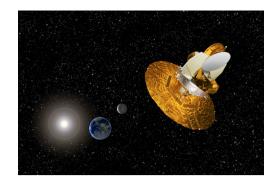
WMAP 3 Year Results

D.N. Spergel et al., astro-ph/0603449



 $(\Omega_m h^2, \Omega_b h^2, h, n_s, \tau, \sigma_8) =$

 $(0.127^{+0.007}_{-0.013}, 0.0223^{+0.0007}_{-0.009}, 0.73^{+0.03}_{-0.03}, 0.951^{+0.015}_{-0.019}, 0.09^{+0.03}_{-0.03}, 0.74^{+0.05}_{-0.06})$



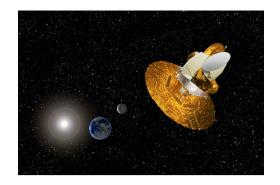
WMAP 3 Year Results

D.N. Spergel et al., astro-ph/0603449

ACD	M Model				
	WMAP+	WMAP+	WMAP+	WMAP +	WMAP+
	SDSS	LRG	SNLS	SN Gold	CFHTLS
Parameter					
$100\Omega_b h^2$	$2.233^{+0.062}_{-0.086}$	$2.242^{+0.062}_{-0.084}$	$2.233^{+0.069}_{-0.088}$	$2.227^{+0.065}_{-0.082}$	$2.255_{-0.083}^{+0.062}$
$\Omega_m h^2$	$0.1329^{+0.0056}_{-0.0075}$	$0.1337\substack{+0.0044\\-0.0061}$	$0.1295^{+0.0056}_{-0.0072}$	$0.1349^{+0.0056}_{-0.0071}$	$0.1408^{+0.0034}_{-0.0050}$
h	$0.709^{+0.024}_{-0.032}$	$0.709\substack{+0.016\\-0.023}$	$0.723^{+0.021}_{-0.030}$	$0.701\substack{+0.020\\-0.026}$	$0.687^{+0.016}_{-0.024}$
A	$0.813\substack{+0.042\\-0.052}$	$0.816\substack{+0.042\\-0.049}$	$0.808\substack{+0.044\\-0.051}$	$0.827^{+0.045}_{-0.053}$	$0.846^{+0.037}_{-0.047}$
au	$0.079^{+0.029}_{-0.032}$	$0.082^{+0.028}_{-0.033}$	$0.085^{+0.028}_{-0.032}$	$0.079^{+0.028}_{-0.034}$	$0.088^{+0.026}_{-0.032}$
n_s	$0.948^{+0.015}_{-0.018}$	$0.951_{-0.018}^{+0.014}$	$0.950^{+0.015}_{-0.019}$	$0.946^{+0.015}_{-0.019}$	$0.953_{-0.019}^{+0.015}$
σ_8	$0.772^{+0.036}_{-0.048}$	$0.781\substack{+0.032\\-0.045}$	$0.758^{+0.038}_{-0.052}$	$0.784^{+0.035}_{-0.049}$	$0.826^{+0.022}_{-0.035}$
Ω_m	$0.266^{+0.026}_{-0.036}$	$0.267^{+0.018}_{-0.025}$	$0.249^{+0.024}_{-0.031}$	$0.276_{-0.031}^{+0.023}$	$0.299^{+0.019}_{-0.025}$

WMAP 3 + SNLS:
$$w = -0.97^{+0.07}_{-0.09}$$

$$\omega = \frac{p}{\rho}$$



WMAP 5 Year Results

E. Komatsu et al., 0803.0547 [astro-ph]

Summary of the cosmological parameters of ΛCDM model and the corresponding 68% intervals

Class	Parameter	$W\!M\!AP$ 5-year ML^a	WMAP+BAO+SN ML	$W\!M\!AP$ 5-year Mean^b	WMAP+BAO+SN Mean
Primary	$100\Omega_b h^2$	2.268	2.263	2.273 ± 0.062	2.265 ± 0.059
	$\Omega_c h^2$	0.1081	0.1136	0.1099 ± 0.0062	0.1143 ± 0.0034
	Ω_{Λ}	0.751	0.724	0.742 ± 0.030	0.721 ± 0.015
	n_s	0.961	0.961	$0.963\substack{+0.014\\-0.015}$	$0.960^{+0.014}_{-0.013}$
	τ	0.089	0.080	0.087 ± 0.017	0.084 ± 0.016
	$\Delta^2_{\mathcal{R}}(k_0^{\ e})$	2.41×10^{-9}	2.42×10^{-9}	$(2.41 \pm 0.11) \times 10^{-9}$	$(2.457^{+0.092}_{-0.093}) \times 10^{-9}$
Derived	σ_8	0.787	0.811	0.796 ± 0.036	0.817 ± 0.026
	H_0	$72.4 \ \mathrm{km/s/Mpc}$	$70.3 \ \mathrm{km/s/Mpc}$	$71.9^{+2.6}_{-2.7} \text{ km/s/Mpc}$	$70.1\pm1.3~\mathrm{km/s/Mpc}$
	Ω_b	0.0432	0.0458	0.0441 ± 0.0030	0.0462 ± 0.0015
	Ω_c	0.206	0.230	0.214 ± 0.027	0.233 ± 0.013
	$\Omega_m h^2$	0.1308	0.1363	0.1326 ± 0.0063	0.1369 ± 0.0037
	z_{reion}^{f}	11.2	10.5	11.0 ± 1.4	10.8 ± 1.4
	$t_0{}^g$	13.69 Gyr	$13.72 \mathrm{Gyr}$	$13.69\pm0.13~\mathrm{Gyr}$	$13.73\pm0.12~{\rm Gyr}$

Section	Name	Type	WMAP 5-year	WMAP+BAO+SN
§ 3.2	Gravitational $Wave^{a}$	No Running Ind.	$r < 0.43^{b}$	r < 0.20
§ 3.1.3	Running Index	No Grav. Wave	$-0.090 < dn_s/d \ln k < 0.019^c$	$-0.0728 < dn_s/d\ln k < 0.0087$
$\S 3.4$	$Curvature^{d}$		$-0.063 < \Omega_k < 0.017^e$	$-0.0175 < \Omega_k < 0.0085^f$
-	Curvature Radius ⁹	Positive Curv.	$R_{\rm curv} > 12 \ h^{-1} {\rm Gpc}$	$R_{\rm curv} > 23 \ h^{-1} {\rm Gpc}$
		Negative Curv.	$R_{\rm curv} > 23 \ h^{-1} {\rm Gpc}$	$R_{\rm curv} > 33 \ h^{-1} {\rm Gpc}$
$\S 3.5$	Gaussianity	Local	$-9 < f_{NL}^{\text{local}} < 111^{h}$	N/A
		Equilateral	$-151 < f_{NL}^{equil} < 253^{i}$	N/A
§ 3.6	Adiabaticity	Axion	$\alpha_0 < 0.16^{j}$	$\alpha_0 < 0.067^k$
-		Curvaton	$\alpha_{-1} < 0.011^{l}$	$\alpha_{-1} < 0.0037^m$
$\S 4$	Parity Violation	$Chern-Simons^n$	$-5.9^{\circ} < \Delta \alpha < 2.4^{\circ}$	N/A
$rac{8}{8}rac{4}{5}$	Dark Energy	Constant w^o	$-1.37 < 1 + w < 0.32^{p}$	-0.11 < 1 + w < 0.14
		Evolving $w(z)^q$	N/A	$-0.38 < 1 + w_0 < 0.14^r$
$\S 6.1$	Neutrino $Mass^s$		$\sum m_{ u} < 1.3 { m eV}^t$	$\sum m_{\nu} < 0.61 \mathrm{eV}^u$
$\S 6.2$	Neutrino Species		$N_{\rm eff} > 2.3^v$	$N_{\rm eff} = 4.4 \pm 1.5^w \ (68\%)$

Summary of the 95% confidence limits on deviations from the simple (flat, Gaussian, adiabatic, power-law) Λ CDM model

^{*a*}In the form of the tensor-to-scalar ratio, r, at $k = 0.002 \text{ Mpc}^{-1}$

^bDunkley et al. (2008)

^cDunkley et al. (2008)

^d(Constant) dark energy equation of state allowed to vary ($w \neq -1$)

^eWith the HST prior, $H_0 = 72 \pm 8 \text{ km/s/Mpc}$. For w = -1, $-0.052 < \Omega_k < 0.013$ (95% CL)

^fFor w = -1, $-0.0181 < \Omega_k < 0.0071$ (95% CL)

 ${}^{g}R_{\mathrm{curv}} = (c/H_0)/\sqrt{|\Omega_k|} = 3/\sqrt{|\Omega_k|} h^{-1}\mathrm{Gpc}$

^hCleaned V+W map with $l_{\text{max}} = 500$ and the KQ75 mask, after the point source correction

^{*i*}Cleaned V+W map with $l_{\text{max}} = 700$ and the KQ75 mask, after the point source correction ^{*j*}Dunkley et al. (2008)

^kIn terms of the adiabaticity deviation parameter, $\delta_{adi}^{(c,\gamma)} = \sqrt{\alpha}/3$ (Eq. [39]), the axion-like dark matter and photons are found to obey the adiabatic relation (Eq. [36]) to 8.6%.

 l Dunkley et al. (2008)

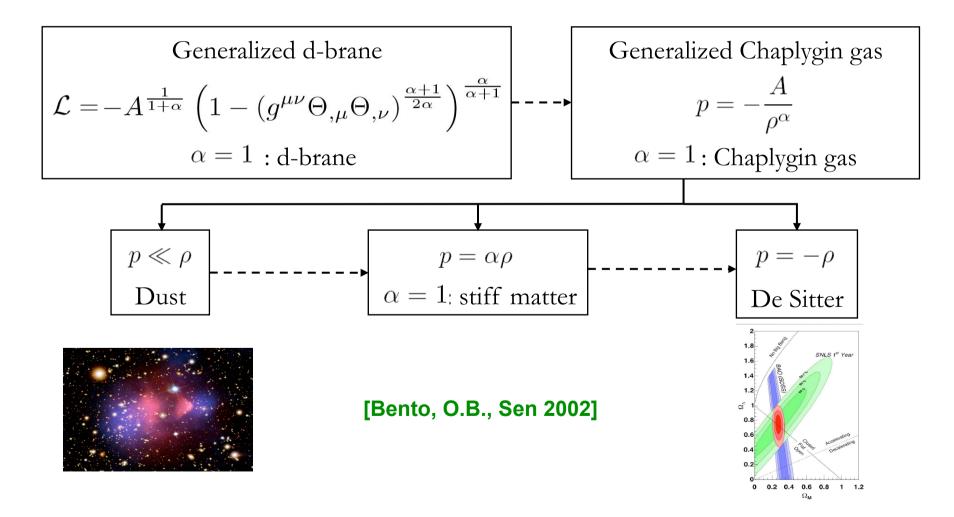
^mIn terms of the adiabaticity deviation parameter, $\delta_{adi}^{(c,\gamma)} = \sqrt{\alpha}/3$ (Eq. [39]), the curvaton-like dark matter and photons are found to obey the adiabatic relation (Eq. [36]) to 2.0%.

^{*n*}For an interaction of the form given by $(\phi/M)F_{\alpha\beta}\tilde{F}^{\alpha\beta}$, the polarization rotation angle is $\Delta\alpha = M^{-1}\int \frac{dt}{a}\dot{\phi}^{\beta}$ ^{*o*}For spatially curved universes $(\Omega_k \neq 0)$ ^{*p*}With the UST prior $H_{\alpha} = 72 \pm 8 \text{ km/s}^{\beta}$ (Mpc

^{*p*}With the HST prior, $H_0 = 72 \pm 8 \text{ km/s/Mpc}$ ^{*q*}For a flat universe ($\Omega_k = 0$) ^{*r*} $w_0 \equiv w(z = 0)$ ^{*s*} $\sum m_{\nu} = 94(\Omega_{\nu}h^2) \text{ eV}$ ^{*t*}Dunkley et al. (2008) ^{*u*}For w = -1. For $w \neq -1$, $\sum m_{\nu} < 0.66 \text{ eV}$ (95% CL) ^{*v*}Dunkley et al. (2008) ^{*w*}With the HST prior, $H_0 = 72 \pm 8 \text{ km/s/Mpc}$. The 95% limit is $1.9 < N_{\text{eff}} < 7.8$

Generalized Chaplygin gas model

Unified model for Dark Energy and Dark Matter



Dark Energy - Dark Matter Unification: Generalized Chaplygin Gas Model

CMBR Constraints [Bento, O. B., Sen 2003, 2004; Amendola et al. 2004, Barreiro, O.B., Torres 2008] SNe la [O. B., Sen, Sen, Silva 2004; Bento, O.B., Santos, Sen 2005] **Gravitational Lensing** [Silva, O. B. 2003] **Structure Formation *** [Sandvik, Tegmark, Zaldarriaga, Waga 2004; Bento, O. B., Sen 2004; Bilic, Tupper, Viollier 2005; ...] **Gamma-ray bursts** [O. B., Silva 2006] **Cosmic topology** [Bento, O. B., Rebouças, Silva 2006] Inflation [O.B., Duvvuri 2006] Coupling with electromagnetic coupling [Bento, O.B., Torres 2007]

[Bernardini, O.B. 2007]

Coupling with neutrinos

Background tests: $\alpha \le 0.35$, $0.8 \le A_s \le 0.9$ $A_s \equiv \frac{A}{\rho_{Ch0}^{1+\alpha}}$ Structure formation and BAO: $\alpha \le 0.2$

Nhedvif feR) he ad 2 field 1/12 to you for (1/12) ND)

[MIG:oBio1988, Blandros teats of Physen Res 40.7.5 [20027) steat 2004]

• Model:
$$S = \int \left\{ \frac{1}{2} f_1(R) + [1 + \lambda f_2(R)] \mathcal{L}_m \right\} \sqrt{-g} d^4x$$

$$df_*(R)$$

 $f_i(R)$ – arbitrary functions of R

$$f_i = \frac{df_i(R)}{dR}$$

• Energy-momentum tensor of matter is not necessarily conserved:

$$\nabla^{\mu} T^{(m)}_{\mu\nu} = \frac{\lambda F_2}{1 + \lambda f_2} \left[g_{\mu\nu} \mathcal{L}_m - T^{(m)}_{\mu\nu} \right] \nabla^{\mu} R$$

- Motion is non-geodesic: $\frac{Du^{\alpha}}{ds} \equiv \frac{du^{\alpha}}{ds} + \Gamma^{\alpha}_{\mu\nu} u^{\mu} u^{\nu} = f^{\alpha}$
- For a perfect fluid: $T^{(m)}_{\mu\nu} = (\epsilon + p)$

$$T^{(m)}_{\mu\nu} = (\epsilon + p) u_{\mu}u_{\nu} - pg_{\mu\nu}$$

$$f^{\alpha} = \frac{1}{\epsilon + p} \left[\frac{\lambda F_2}{1 + \lambda f_2} \left(\mathcal{L}_m + p \right) \nabla_{\nu} R + \nabla_{\nu} p \right] h^{\alpha \nu} \quad h_{\mu \lambda} = g_{\mu \lambda} - u_{\mu} u_{\lambda}$$

Modified New **Daria Motta**amics (MOND)

[Milgrom 1983, Bekenstein, Milgrom 1984, ..., Bekenstein 2004]

Motivation: Flatness Rotation Curve of Galaxies

$$\vec{a} = \mu \left(\frac{|\vec{g}|}{a_0}\right) \vec{g} = -\mu \left(\frac{|\vec{g}|}{a_0}\right) \nabla \phi$$
$$\mu(x) = \begin{cases} 1 & if \ x \gg 1\\ x & if \ x \ll 1 \end{cases}$$

 $a_0 \approx 1.2 \times 10^{-10} \text{ m/s}^2$ - universal acceleration

Tully-Fisher Law: $L_H \propto v_c^4$ as $L_H \propto M = (Ga_0)^{-1}v_c^4$

TeVeS² version: F-function problem

MOND

Tensor-Vector-Scalar field theory, $S = S_g + S_s + S_v + S_m$:

$$S_{g} = (16\pi G)^{-1} \int g^{\alpha\beta} R_{\alpha\beta} (-g)^{1/2} d^{4}x$$
$$S_{s} = -\frac{1}{2} \int \left[\sigma^{2} h^{\alpha\beta} \phi_{,\alpha} \phi_{,\beta} + \frac{1}{2} G \ell^{-2} \sigma^{4} F(kG\sigma^{2})\right] (-g)^{1/2} d^{4}x$$

$$S_{\nu} = -\frac{K}{32\pi G} \int \left[g^{\alpha\beta} g^{\mu\nu} \mathfrak{U}_{[\alpha,\mu]} \mathfrak{U}_{[\beta,\nu]} - 2(\lambda/K) (g^{\mu\nu} \mathfrak{U}_{\mu} \mathfrak{U}_{\nu} + 1) \right] (-g)^{1/2} d^4x$$

$$S_m = \int \mathcal{L}(\tilde{g}_{\mu\nu}, f^{\alpha}, f^{\alpha}_{|\mu}, \cdots)(-\tilde{g})^{1/2} d^4x$$

Conformal transformation to the physical metric: $(-\tilde{g})^{1/2} = e^{-2\phi}(-g)^{1/2}$

Consistency

 PPN: β = 1, γ = 1 (see however O.B., Páramos 2006)
 i) (Potentially) compatible [Skordis, Mota, Ferreira, Boehm 2005]
 CMBR

> ii) Problem with the third peak [Slosar, Melchiorri, Silk 2005]

 $\frac{P_{\Lambda CDM}}{P_{MOND}} \cong 2 \times 10^2$

Gravitational lensing – great potential for testing
 [Zhao, Bacon, Taylor, Horne 2005]

MOND in Post-Newtonian regime

Scalar field: $\phi(r) = \phi_c - \frac{kGm}{4\pi r}$

Vector field:

$$\begin{split} \left(\mathfrak{U}^{[\alpha;\beta]}_{;\beta} + \mathfrak{U}^{\alpha}\mathfrak{U}_{\gamma}\mathfrak{U}^{[\gamma;\beta]}_{;\beta}\right) + 8\pi G\sigma^{2}\left[\mathfrak{U}^{\beta}\phi_{,\beta}\,g^{\alpha\gamma}\phi_{,\gamma} + \mathfrak{U}^{\alpha}(\mathfrak{U}^{\beta}\phi_{,\beta})^{2}\right] \\ = 8\pi G(1 - e^{-4\phi})\left[g^{\alpha\mu}\mathfrak{U}^{\beta}\tilde{T}_{\mu\beta} + \mathfrak{U}^{\alpha}\mathfrak{U}^{\beta}\mathfrak{U}^{\gamma}\tilde{T}_{\gamma\beta}\right] \end{split}$$

• Timelike vector tracks the metric [Bekenstein 2004]

 $\mathfrak{U}^{lpha}=(\sqrt{-g^{00}},0,0,0)$ consistent with eq. of motion

• Einstein eq.

$$G_{\alpha\beta} = 8\pi G \Big[\tilde{T}_{\alpha\beta} + (1 - e^{-4\phi}) \mathfrak{U}^{\mu} \tilde{T}_{\mu(\alpha} \mathfrak{U}_{\beta)} + \tau_{\alpha\beta} \Big] + \Theta_{\alpha\beta}$$

$$\tau_{\alpha\beta} \equiv \sigma^{2} \left[\phi_{,\alpha}\phi_{,\beta} - \frac{1}{2} g^{\mu\nu}\phi_{,\mu}\phi_{,\nu} g_{\alpha\beta} - \mathfrak{U}^{\mu}\phi_{,\mu} \left(\mathfrak{U}_{(\alpha}\phi_{,\beta)} - \frac{1}{2} \mathfrak{U}^{\nu}\phi_{,\nu} g_{\alpha\beta} \right) \right] \\ \Theta_{\alpha\beta} \equiv K \left(g^{\mu\nu}\mathfrak{U}_{[\mu,\alpha]}\mathfrak{U}_{[\nu,\beta]} - \frac{1}{4} g^{\sigma\tau} g^{\mu\nu}\mathfrak{U}_{[\sigma,\mu]}\mathfrak{U}_{[\tau,\nu]} g_{\alpha\beta} \right) - \lambda \mathfrak{U}_{\alpha}\mathfrak{U}_{\beta}$$

Parametrization of the metric

$$g_{\alpha\beta} dx^{\alpha} dx^{\beta} = -e^{\nu} dt^{2} + e^{\varsigma} [d\varrho^{2} + \varrho^{2} (d\theta^{2} + \sin^{2} \theta d\varphi^{2})]$$

$$-g_{00} = e^{\nu} = 1 - R/r + \alpha_{2} (R/r)^{2} + \dots$$

$$g_{rr} = e^{\sigma} = 1 + \beta_{1} R/r + \beta_{2} (R/r)^{2} + \dots$$

• Expansion of Einstein eq. up to order r⁻⁴

$$\begin{split} \lambda &= \frac{K(2+\beta_1 - 4\alpha_2)}{4} \frac{R^2}{r^4} \quad 8\pi G \tau_{00} = 8\pi G \tau_{rr} = \frac{kR^2}{16\pi r^4} \\ \theta_{00} &= \frac{K(-2\beta_1 - 3 + 8\alpha_2)}{8} \frac{R^2}{r^4} \quad , \quad \theta_{rr} = -\frac{K}{8} \frac{R^2}{r^4} \\ \bullet \text{ Solution: } \beta_1 = 1 \quad , \quad \alpha_2 = \frac{1}{2} \quad , \quad \beta_2 = \frac{3}{8} + \frac{1}{16} K - \frac{k}{32\pi} \left(\frac{R}{r}\right)^2 \end{split}$$

Transformation into physical, isotropic PPN metric yields

$$eta=1$$
 , $\gamma=1$

(like GR !)

Dynamical solution for the vector field

- Assume $\mathfrak{U}^{lpha} = (\mathfrak{U}^{0}(r), \mathfrak{U}^{r}(r), 0, 0)$, $\mathfrak{U}^{lpha}\mathfrak{U}_{lpha} = -1$
- Solve eq. of motion of the vector field

$$\begin{bmatrix} r^2 \sqrt{-\frac{g_{rr}}{g_{00}}} \mathfrak{U}_0' \end{bmatrix}' = Ar^2 \sqrt{-\frac{g_{rr}}{g_{00}}} \phi'^2 \mathfrak{U}_0 = \frac{C}{r^2 \sqrt{-g_{00}^3 g_{rr}}} \mathfrak{U}_0$$

with the expansion $\mathfrak{U}_0(r) = -1 + \gamma_1 \frac{R}{r} + \gamma_2 \left(\frac{R}{r}\right)^2$

• Solve for γ_1 and γ_2 and expand quantities in Einstein eq.

$$8\pi G\tau_{00} \approx 8\pi G\tau_{rr} = \frac{kR^2}{16\pi r^4} , \quad \lambda \approx [\gamma_1(1+\beta_1)+4\gamma_2] \frac{KR^2}{4r^4}$$

$$\Theta_{00} \approx -\left[(1+\beta_1-\gamma_1)\gamma_1+4\gamma_2\right] \frac{KR^2}{2r^4} , \quad \Theta_{rr} \approx -\gamma_1^2 \frac{KR^2}{2r^4}$$

• Solution:

$$\alpha_2 = \frac{1}{2} + \frac{k}{16\pi} + \frac{K}{2\left(1 + 9\frac{K\pi}{k}\right)^2} \quad , \quad \beta_1 = 1 \quad , \quad \beta_2 = \frac{3}{8} - \frac{3k}{32\pi} + \frac{K}{4\left(1 + 9\frac{K\pi}{k}\right)^2}$$

• Transformation into physical, isotropic PPN metric yields:

$$g_{00} = -1 + 2\frac{G_N m}{r} - 2\left[2\alpha_2 + \left(2\gamma_1 - \alpha_2 - \frac{1}{2}\right)\frac{k}{\pi}\right] \left(\frac{G_N m}{r}\right)^2$$

$$g_{rr} = 1 + 2 \frac{G_N R}{r}$$
, $g_{0r} = -\frac{\sqrt{2(1-2\gamma_1)k}}{\pi} \left(\frac{G_N m}{r}\right)^{3/2}$

Gives rise to a non-diagonal component and

$$\beta = 1 + \frac{K}{\left(1 + 9\frac{K\pi}{k}\right)^2} - \frac{k}{\pi} \left(\frac{7}{8} + \frac{2}{1 + 9\frac{K\pi}{k}}\right) , \quad \gamma = 1$$
(different from GR!)

Constraint $|\beta - 1| < 6 \times 10^{-4}$
allows for $k < k_{up}$
[Giannios 2005]
[O.B., Páramos 2006]

Can MOND take a bullet ?

[Angus, Shan, Zhao, Famaey 2006]

- Dark halo made of neutrinos: $m_{\nu} = (2-3)eV$
- Not quite ! [Takahashi, Chiba, astro-ph/0701365] ٠

Neutrino oscillations:

$$\Delta m_v^2 \le 10^{-3} eV^2$$

Tremaine-Gunn bound: $\rho_{vMax} = 4.8 \times 10^{-27} \left(\frac{m_v}{2eV}\right)^4 \left(\frac{T_x}{keV}\right)^{3/2} g/cm^3$ Core density (Hernquist profile): $M(\langle r) = \frac{M_0 r^2}{(r+r_0)^2}$ $\rho_{core} = \frac{3M(\langle r_0)}{4\pi r^3}$ 1/4 -3/4

$$\rho_{core} < \rho_{vMax}: \quad m_v > 6.1 \left(\frac{M_0}{10^{14} M_{sun}}\right)^{1/4} \left(\frac{r_0}{100 kpc}\right)^{5/4} \left(\frac{T_X}{keV}\right)^{-5/8} eV$$

A1689: $M_0 = (6.2 \pm 1.2) \times 10^{14} M_{sun}$ $r_0 = (125 \pm 52) kpc$ $T_X = (9.00 \pm 0.13) keV$ $m_{y} > (3.6 \pm 1.1) eV$

[O.B., Böhmer, Harko, Lobo, Phys. Rev. D 75 (2007) 104016]

$$S = \int \left[\frac{1}{2}f_1(R) + f_2(R)\mathcal{L}_m\right]\sqrt{-g}d^4x\,,$$

- Implications:
- MOND-like behaviour: extra force and Tully-Fisher law ($L \sim v_\infty^4$)

If
$$a_N << a$$
: $\vec{a}_N \approx \frac{a}{a_E} \vec{a}$ $\frac{1}{a_E} \equiv \frac{1}{2f} \left(1 - \frac{f^2}{a^2}\right)$

Hence $a \approx \sqrt{a_E a_N}$ and as $a_N = GM/r^2$ it follows that $a \approx \sqrt{a_E GM}/r = v_{tg}^2/r$ $v_{tg}^2 \to v_{\infty}^2 = \sqrt{a_E GM}$

and the Tully-Fisher law as L~M

[O.B., Böhmer, Harko, Lobo, Phys. Rev. D 75 (2007) 104016]

- Implications:
- Pioneer-like acceleration:

$$a_E = rac{f^2 r^2}{GM} + 2f$$
 $f \sim GM\alpha/r$
 $f \rightarrow 0, \ a_E \approx \alpha^2$ $\alpha - const$

[Anderson, Laing, Lau, Liu, Nieto, Turyshev 2002] [O.B., Páramos 2004]

 However, most likely the Pioneer anomalous acceleration is due to on-board thermal effects

[O.B., Francisco, Gil, Páramos 2008]

[O.B., Böhmer, Harko, Lobo, Phys. Rev. D 75 (2007) 104016]

- Stellar stability [O.B., Páramos, Phys. Rev. D77 (2008)]
- On the non-trivial gravitational coupling to matter [O.B., Páramos, Class. Quant. Grav. 25 (2008)]
- Non-minimal coupling of perfect fluids to curvature (Poster) [O.B., Lobo, Páramos, Phys. Rev. D78 (2008)]
- Non-minimal curvature-matter couplings in modified gravity (Review) [O.B., Páramos, Harko, Lobo, arXiv:0811.2876 [gr-qc]]
- Energy Conditions and Stability in f(R) theories of gravity with non-minimal coupling to matter [O.B., Sequeira, Phys. Rev. B79 (2009)]
- Mimicking dark matter through a non-minimal gravitational coupling with matter [O.B., Páramos, arXiv:0906.4757 [astro-ph.GA]]

Energy Conditions and Stability

[O.B., Sequeira, Phys. Rev. B79 (2009)]

Physical Viability

- Match GR Parametrized Post-Newtonian behaviour at solar system [O.B., Páramos, Class. Quant. Grav. 25 (2008)]
- Can lead to a phenomenologically consistent cosmology if Energy Conditions are satisfied: Strong Energy Condition (SEC) (Gravity is attractive) Null Energy Condition (NEC) (Gravity is attractive) Dominant Energy Condition (DEC) ($v_{sound} \leq c$) Weak Energy Condition (WEK) (Positive energy density)
- Instability Free

Dolgov-Kawasaki instability

-Ghost free, well posed Cauchy problem, correct cosmological perturbations, ...

Action and Field equations

Action:
$$S = \int \left[\frac{1}{2}f_1(R) + f_2(R)\mathcal{L}_m\right]\sqrt{-g}d^4x$$

Field equations:

$$(f_1' + 2\mathcal{L}_m f_2')R_{\mu\nu} - \frac{1}{2}f_1g_{\mu\nu} - \Delta_{\mu\nu}(f_1' + 2\mathcal{L}_m f_2') = f_2T_{\mu\nu}$$
$$\Delta_{\mu\nu} = \nabla_{\mu}\nabla_{\nu} - g_{\mu\nu}g^{\alpha\beta}\nabla_{\alpha}\nabla_{\beta}$$

Effective energy-momentum tensor non-conservation:

$$\nabla^{\mu}T_{\mu\nu} = \frac{f_2'}{f_2} \left[g_{\mu\nu}\mathcal{L}_m - T_{\mu\nu}\right] \nabla^{\mu}R \,.$$

Eq. motion test particle: (Perfect fluid)

$$u^{\nu} \nabla_{\nu} u^{\lambda} = \frac{1}{\epsilon + p} \left(\frac{f_2'}{f_2} (\mathcal{L}_m + p) \nabla_{\nu} R + \nabla_{\nu} p \right) h^{\nu \lambda}$$

Action and Field equations

Field equations:

$$(f_1' + 2\mathcal{L}_m f_2')R_{\mu\nu} - \frac{1}{2}f_1g_{\mu\nu} - \Delta_{\mu\nu}(f_1' + 2\mathcal{L}_m f_2') = f_2T_{\mu\nu}$$
$$G_{\mu\nu} = \hat{k}\left(\hat{T}_{\mu\nu} + T_{\mu\nu}\right)$$

Effective energy-momentum tensor:

$$\hat{T}_{\mu\nu} = \frac{1}{2} \left(\frac{f_1}{f_2} - \frac{f_1' + 2\mathcal{L}_m f_2'}{f_2} R \right) g_{\mu\nu} + \frac{1}{f_2} \Delta_{\mu\nu} \left(f_1' + 2\mathcal{L}_m f_2' \right)$$

Effective gravitational coupling:

$$\hat{k} = \frac{f_2}{f_1' + 2\mathcal{L}_m f_2'}$$

Effective quantities

Perfect fluid: $T_{\mu\nu} = (\rho + p)u_{\mu}u_{\nu} - pg_{\mu\nu}$

Robertson-Walker metric:

$$ds^2 = dt^2 - a^2(t)ds_3^2$$

$$\Delta_{\mu\nu}h(R,\mathcal{L}_m) = (\nabla_{\mu}\nabla_{\nu} - g_{\mu\nu}\Box)h(R,\mathcal{L}_m)$$
$$= (\partial_{\mu}\partial_{\nu} - g_{\mu\nu}\partial_0\partial_0)h - (\Gamma^0_{\mu\nu} + g_{\mu\nu}3H)\partial_0h$$

Effective energy-density:

$$\hat{\rho} = \frac{1}{2} \left(\frac{f_1}{f_2} - \frac{f_1' + 2\mathcal{L}_m f_2'}{f_2} R \right) - 3H \frac{f_1'' + 2\mathcal{L}_m f_2''}{f_2} \dot{R}$$

Effective pressure:

$$\hat{p} = -\frac{1}{2} \left(\frac{f_1}{f_2} - \frac{f_1' + 2\mathcal{L}_m f_2'}{f_2} R \right) + (\ddot{R} + 2H\dot{R}) \frac{f_1'' + 2\mathcal{L}_m f_2''}{f_2} + \frac{f_1''' + 2\mathcal{L}_m f_2'''}{f_2} \dot{R}^2$$

Effective gravitational coupling:

$$\hat{k} = \frac{f_2}{f_1' + 2\mathcal{L}_m f_2'} > 0$$

Kinematical Quantities

• Flat Robertson-Walker metric

$$R = -6\left(H^2 + \frac{\ddot{a}}{a}\right)$$

• Deceleration (q), jerk (j), snap (s) parameters

$$q = -\frac{1}{H^2}\frac{\ddot{a}}{a}, \quad j = \frac{1}{H^3}\frac{\ddot{a}}{a}, \quad s = \frac{1}{H^4}\frac{\ddot{a}}{a}$$

$$\dot{R} = -6H^3(j-q-2), \quad \ddot{R} = -6H^4(s+q^2+8q+6),$$

• Raychaudhuri eq. for the expansion parameter for a congruence of timelike geodesics

$$\frac{d\theta}{d\tau} = -\frac{1}{3}\theta^2 - \sigma_{\mu\nu}\sigma^{\mu\nu} + \omega_{\mu\nu}\omega^{\mu\nu} - R_{\mu\nu}u^{\mu}u^{\nu}$$

• Raychaudhuri eq. for a congruence of null geodesics

$$\frac{d\theta}{d\tau} = -\frac{1}{2}\theta^2 - \sigma_{\mu\nu}\sigma^{\mu\nu} + \omega_{\mu\nu}\omega^{\mu\nu} - R_{\mu\nu}k^{\mu}k^{\nu}$$

Condition for attractive gravity

$$\frac{d\theta}{d\tau} < 0$$

- SEC $R_{\mu\nu}u^{\mu}u^{\nu} \ge 0$
- NEC $R_{\mu\nu}k^{\mu}k^{\nu} \ge 0$

Warrant that gravity is geometrically attractive

$$G_{\mu\nu} = \hat{k} \left(\hat{T}_{\mu\nu} + T_{\mu\nu} \right) \qquad R_{\mu\nu} = \hat{k} \left(\hat{T}_{\mu\nu} + T_{\mu\nu} - \frac{1}{2} g_{\mu\nu} (\hat{T} + T) \right)$$

• SEC

$$\rho + 3p - \left(\frac{f_1}{f_2} - \frac{f_1' + 2\mathcal{L}_m f_2'}{f_2}R\right) + 3(\ddot{R} + H\dot{R})\frac{f_1'' + 2\mathcal{L}_m f_2''}{f_2} + 3\frac{f_1''' + 2\mathcal{L}_m f_2'''}{f_2}\dot{R}^2 \ge 0$$

• NEC
$$\rho + p + (\ddot{R} - H\dot{R})\frac{f_1'' + 2\mathcal{L}_m f_2''}{f_2} + \frac{f_1''' + 2\mathcal{L}_m f_2'''}{f_2}\dot{R}^2 \ge 0$$

• DEC

$$\rho - p + \left(\frac{f_1}{f_2} - \frac{f_1' + 2\mathcal{L}_m f_2'}{f_2}R\right) - \left(\ddot{R} + 5H\dot{R}\right)\frac{f_1'' + 2\mathcal{L}_m f_2''}{f_2} - \frac{f_1''' + 2\mathcal{L}_m f_2'''}{f_2}\dot{R}^2 \ge 0$$

• WEC

$$\rho + \frac{1}{2} \left(\frac{f_1}{f_2} - \frac{f_1' + 2\mathcal{L}_m f_2'}{f_2} R \right) - 3H \frac{f_1'' + 2\mathcal{L}_m f_2''}{f_2} \dot{R} \ge 0$$

Transformations (GR → f(R) theory with non-minimal coupling)

$$\rho \to \rho + \hat{\rho} \qquad \qquad p \to p + \hat{p}$$

• Models

$$f_1(R) = R + \epsilon R^n \qquad f_2(R) = 1 + \lambda R^m$$

• Energy conditions:

$$\frac{\hat{\epsilon}|R|^n}{1+\hat{\lambda}|R|^m} \left(a - \alpha_n - \frac{2\hat{\lambda}\mathcal{L}_m}{\hat{\epsilon}}\alpha_m|R|^{m-n}\right) \ge b$$

$$\hat{\epsilon} = (-1)^n \epsilon \qquad \hat{\lambda} = (-1)^m \lambda$$

Results

$$f_1(R) = R + \epsilon R^n \qquad f_2(R) = 1 + \lambda R^m$$
$$\frac{\hat{\epsilon}|R|^n}{1 + \hat{\lambda}|R|^m} \left(a - \alpha_n - \frac{2\hat{\lambda}\mathcal{L}_m}{\hat{\epsilon}} \alpha_m |R|^{m-n} \right) \ge b$$

b=0		$\hat{\epsilon} > 0$	$\hat{\epsilon} < 0$
	$\hat{\lambda} > 0$	$\frac{2\hat{\lambda}\mathcal{L}_m}{\hat{\epsilon}} \le \frac{a - \alpha_n}{\alpha_m} R ^{n - m}$	$\frac{2\hat{\lambda}\mathcal{L}_m}{ \hat{\epsilon} } \le \frac{\alpha_n - a}{\alpha_m} R ^{n-m}$
$\hat{\lambda} < 0$	$1 - \hat{\lambda} R ^m > 0$	$\frac{2 \hat{\lambda} \mathcal{L}_m}{\hat{\epsilon}} \ge \frac{\alpha_n - a}{\alpha_m} R ^{n-m}$	$\frac{2 \hat{\lambda} \mathcal{L}_m}{ \hat{\epsilon} } \ge \frac{a - \alpha_n}{\alpha_m} R ^{n-m}$
		$\frac{2 \hat{\lambda} \mathcal{L}_m}{\hat{\epsilon}} \le \frac{\alpha_n - a}{\alpha_m} R ^{n-m}$	$\frac{2 \hat{\lambda} \mathcal{L}_m}{ \hat{\epsilon} } \le \frac{a - \alpha_n}{\alpha_m} R ^{n-m}$

• SEC
$$a^{SEC} = -1, \quad b^{SEC} = -(\rho + 3p),$$

$$\alpha_n^{SEC} = -n \left[1 + 3(n-1)(\ddot{R} + H\dot{R})R^{-2} + 3(n-1)(n-2)R^{-3}\dot{R}^2 \right]$$

$$\alpha_n^{SEC} = n \left[-1 + \frac{q^2 + 7q + j + s + 4}{2(q-1)^2}(n-1) - \frac{(j-q-2)^2}{2(q-1)^3}(n-1)(n-2) \right]$$

$$a^{NEC} = 0, \quad b^{NEC} = -(\rho + p),$$
• NEC
$$\alpha_n^{NEC} = -n(n-1) \left[(\ddot{R} - H\dot{R})R^{-2} + (n-2)R^{-3}\dot{R}^2 \right]$$

$$\alpha_n^{NEC} = n(n-1) \left[\frac{q^2 + 9q - j + s + 8}{6(q-1)^2} - \frac{(j-q-2)^2}{6(q-1)^3}(n-2) \right]$$

$$a^{DEC} = 1, \quad b^{DEC} = -(\rho - p),$$
• DEC
$$\alpha_n^{DEC} = n \left[1 + (n-1)(\ddot{R} + 5H\dot{R})R^{-2} + (n-1)(n-2)R^{-3}\dot{R}^2 \right]$$

$$\alpha_n^{DEC} = n \left[1 - \frac{q^2 + 3q + 5j + s - 4}{6(q-1)^2} (n-1) + \frac{(j-q-2)^2}{6(q-1)^3} (n-1)(n-2) \right]$$

$$a^{WEC} = \frac{1}{2}, \quad b^{WEC} = -\rho,$$

$$\alpha_n^{WEC} = n \left[\frac{1}{2} + 3(n-1)HR^{-2}\dot{R} \right]$$

$$\alpha_n^{WEC} = n \left[\frac{1}{2} - \frac{j-q-2}{2(1-q)^2}(n-1) \right]$$

Positive gravitational coupling

• WEC

$$a^{AG} = 1, \quad b^{AG} = 0,$$
$$\alpha_n^{AG} = -\frac{n}{6H^2(1-q)}.$$

• **Dolgov-Kawasaki criterion (**a^{DK}=b^{DK}=0)

$$\frac{\alpha_n^{DK}}{\alpha_m^{DK}} = \frac{n(n-1)}{m(m-1)}$$

Dolgov-Kawasaki Instability

• Dynamical eq. for the scalar curvature

 $3(f_1'' + 2\mathcal{L}_m f_2'') \Box R + 3(f_1''' + 2\mathcal{L}_m f_2''') \nabla^{\mu} R \nabla_{\mu} R + 12f_2'' \nabla^{\mu} \mathcal{L}_m \nabla_{\mu} R + 6f_2' \Box \mathcal{L}_m + (f_1' + 2\mathcal{L}_m f_2') R - 2f_1 = f_2 T$

Perturbative equation

 $R = R_0 + R_1 \qquad T = T_0 + T_1 \qquad g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$ $\frac{\partial^2 R_1}{\partial t^2} - \nabla^2 R_1 + m_{eff}^2 R_1 = -\frac{f_2}{3(f_1'' + 2\mathcal{L}_m f_2'')} T_1$ $m_{eff}^2 = \frac{1}{3(f_1'' + 2\mathcal{L}_m f_2'')} \left[f_1' + f_2' (T_0 - 2\mathcal{L}_m) - (f_1'' + 2\mathcal{L}_m f_2'') R_0 \right]$

• Stability Criterion $f_1(R) = R + \epsilon \varphi_1(R)$ $f_2(R) = 1 + \lambda \varphi_2(R)$

 $f_1''(R) + 2\mathcal{L}_m f_2''(R) \ge 0$

Dolgov-Kawasaki Criterion

 $f_1''(R) + 2\mathcal{L}_m f_2''(R) \ge 0$

• Models

$$f_1(R) = R + \epsilon R^n \qquad f_2(R) = 1 + \lambda R^m$$

Stability conditions

$$\hat{\epsilon}n(n-1)|R|^{n-2} + 2\hat{\lambda}\mathcal{L}_m m(m-1)|R|^{m-2} \ge 0$$

$$\hat{\epsilon} = \begin{cases} (-1)^n \epsilon, & \text{if } R < 0\\ \epsilon, & \text{if } R > 0 \end{cases}, \quad \hat{\lambda} = \begin{cases} (-1)^m \lambda, & \text{if } R < 0\\ \lambda, & \text{if } R > 0 \end{cases}$$

Dolgov-Kawasaki Criterion

Results

$$f_1(R) = R + \epsilon R^n \qquad f_2(R) = 1 + \lambda R^m$$
$$\frac{\hat{\epsilon}|R|^n}{1 + \hat{\lambda}|R|^m} \left(a - \alpha_n - \frac{2\hat{\lambda}\mathcal{L}_m}{\hat{\epsilon}}\alpha_m |R|^{m-n} \right) \ge b$$

a=b=0	$\hat{\epsilon} > 0$	$\hat{\epsilon} < 0$
$\hat{\lambda} > 0$	$\frac{2\hat{\lambda}\mathcal{L}_m}{\hat{\epsilon}} \le \frac{a-\alpha_n}{\alpha_m} R ^{n-m}$	$\frac{2\hat{\lambda}\mathcal{L}_m}{ \hat{\epsilon} } \le \frac{\alpha_n - a}{\alpha_m} R ^{n-m}$
$\hat{\lambda} < 0$	$\frac{2 \hat{\lambda} \mathcal{L}_m}{\hat{\epsilon}} \geq \frac{\alpha_n - a}{\alpha_m} R ^{n-m}$	$\frac{2 \hat{\lambda} \mathcal{L}_m}{ \hat{\epsilon} } \ge \frac{a - \alpha_n}{\alpha_m} R ^{n-m}$

Dolgov-Kawasaki Criterion

 $f_1''(R) + 2\mathcal{L}_m f_2''(R) \ge 0$

• Models

$$f_1(R) = \sum_{n=1}^k a_n R^n$$
 $f_2(R) = 1 + \lambda \sum_{m=1}^{k'} b_m R^m$

Stability condition

$$\sum_{n=2}^{k} a_n n(n-1)R^{n-2} + 2\lambda \mathcal{L}_m \sum_{m=2}^{k'} b_m m(m-1)R^{m-2} \ge 0$$

R>0	k'=2		k'	k' = 3	
$l_{h} = 0$	$a_2 + 2\lambda \mathcal{L}_m b_2 \ge 0$		$a_3 > 0$	$R \ge -\frac{a_2 + 2\lambda \mathcal{L}_m b_2}{3a_3}$	
k = 2			$a_3 < 0$	$R \le \frac{a_2 + 2\lambda \mathcal{L}_m b_2}{3 a_3 }$	
k = 3	$\lambda \mathcal{L}_m b_3 > 0$	$R \geq -\frac{a_2 + 2\lambda \mathcal{L}_m b_2}{6\lambda \mathcal{L}_m b_3}$	$a_3 + 2\lambda \mathcal{L}_m b_3 > 0$	$R \geq -\frac{a_2 + 2\lambda \mathcal{L}_m b_2}{3(a_3 + 2\lambda \mathcal{L}_m b_3)}$	
	$\lambda \mathcal{L}_m b_3 < 0$	$R \le \frac{a_2 + 2\lambda \mathcal{L}_m b_2}{6 \lambda \mathcal{L}_m b_3 }$	$a_3 + 2\lambda \mathcal{L}_m b_3 < 0$	$R \le \frac{a_2 + 2\lambda \mathcal{L}_m b_2}{3 a_3 + 2\lambda \mathcal{L}_m b_3 }$	

Conclusions

- New f(R) modied theories of gravity with non-minimal curvaturematter coupling have quite interesting phenomenological implications
- They are shown to be physically consistent and all energy conditions depend on the geometry as well as on the matter Langragian and parameters (ϵ , λ)

$$f_1(R) = R + \epsilon \varphi_1(R)$$
 $f_2(R) = 1 + \lambda \varphi_2(R)$

- For a given model all energy conditions, positive effective gravitational coupling and stability condition can be expressed in terms of a single type of inequality with suitable parameters

[O.B., Böhmer, Harko, Lobo, Phys. Rev. D 75 (2007) 104016]

- Implications:
- MOND-like behaviour: extra force and Tully-Fisher law ($L \sim v_\infty^4$)

$$\vec{a} = \vec{a}_N + f$$
If $\mathbf{a}_N << \mathbf{a}: \qquad \vec{a}_N \approx \frac{a}{a_E} \vec{a} \qquad \qquad \frac{1}{a_E} \equiv \frac{1}{2f} \left(1 - \frac{f^2}{a^2} \right)$
Hence $a \approx \sqrt{a_E a_N}$ and as $a_N = GM/r^2$ it follows that
 $a \approx \sqrt{a_E GM}/r = v_{tg}^2/r \qquad v_{tg}^2 \to v_{\infty}^2 = \sqrt{a_E GM}$

and the Tully-Fisher law as L~M

• Pioneer-like acceleration:

$$a_E = rac{f^2 r^2}{GM} + 2f \quad f \sim GM lpha/r$$
uryshev 2002] $f \rightarrow 0, \; a_E \, pprox \, lpha^2$

[Anderson, Laing, Lau, Liu, Nieto, Turyshev 2002] [O.B., Páramos 2004]

 α – const.