Conformal Transformations: The Covariant Approach Perspective

Sante Carloni S. Odintsov E. Elizalde Galacelona

"The Invisible Universe" Paris 03/07/2009

Outline

- Conformal transformations
- Conformal transformations and alternative gravity (specifically f(R)-gravity)
- 1+3 conformal transformation
- transformation of the 1+3 covariant approach
- Transformation of the CoGI theory of perturbations for f(R)-gravity
- An example with a toy model

Conformal transformations (CT)

Conformal transformations in Riemannian geometry are defined as

$g_{ab} \to \bar{g}_{ab} = \Upsilon(t, x) g_{ab}$

with $\Upsilon > 0$. They preserve angles and the signature of the manifold.

CTs are used in many different fields including Relativity

They also have interesting applications in alternative gravity...

Fourth Order Gravity

In homogeneous and isotropic spacetimes a general Lagrangian for fourth order gravity in presence of matter is

 $L = \sqrt{-g} \left[f(R) + 2\mathcal{L}_m(\mathbf{I}, g^{ab}) \right]$

varying with respect to the metric gives

$$F(R)R_{ab} - \frac{1}{2}g_{ab}f(R) = F(R)_{;cd}\left(g_a^c g_b^d - g_{ab}g^{cd}\right) + T_{ab}^m$$

where

$$T_{ab}^{m} = \frac{2}{\sqrt{-g}} \frac{\delta(\sqrt{-g}\mathcal{L}_{m})}{\delta g_{ab}}$$

and F denotes the derivative of f with respect to R.

f(R)-gravity and CT

- These theories emerge as low energy limit of fundamental theories, like M-theory or supergravity
- They have recently been used to model Dark Energy with some success...
- However one of the issues of these theories is their complexity due to the non linearities and the additional degrees of freedom.

"I'm warning you, Perkins - your flagrant disregard for the laws of physics will not be tolerated /"

 CTs are important for these models: they reduce complex theories of gravity to Einstein gravity plus a minimally coupled scalar field, which is easier to treat.

CT in alternative gravity

In alternative gravity however a conformal transformation is not just the geometrical transformation showed above...

The 1+3 covariant approach (in brief)

- * A time-like flow u^a is introduced, e.g., the fluid flow of galaxy cluster or any fluid flow in cosmology or astrophysics.
- * The remaining spatial freedom is left untouched.

 $\dot{X}_c = u^e \nabla_e X_c$, $\tilde{\nabla}_e X_c = h^p_c h^r_e \nabla_r X_q$

- * From u^a we construct the projection onto surfaces orthogonal to the flow: $h_{ab}=g_{ab}$ + u_au_b
- * Three-volume form: $\eta_{abc} = u^d \eta_{abcd}$
- Covariant convective derivative and projected derivative:

* Kinematics of U^a gives the kinematics of the model

* A general energy-momentum tensor can be decomposed relative to u^a and h_{ab}

Obtain a set of propagation and constraint equations for these variables based on Ricci and Bianchi identities: the 1+3 equations.

Covariant variables have an clear physical interpretation and can be used to investigate both the exact models and perturbations.

1+3 Conformal Transformation

Let us now see the conformal transformation in this formalism.
 We start with the geometric transformation.

$$g_{ab} \to \bar{g}_{ab} = \Upsilon(t, x) g_{ab}$$

$$\begin{pmatrix} h_{ab} \to h_{ab} &= \Upsilon h_{ab} \\ u_a \to \bar{u}_a &= \sqrt{\Upsilon} u_a \end{pmatrix}$$

change of observer clodeceteration

With this we can transform the derivatives...

$$\begin{split} X_a^{\dagger} &= \frac{1}{\sqrt{\Upsilon}} \left[\dot{X}_a - \frac{1}{\Upsilon} u^b X_{(b} \nabla_{a)} \Upsilon + \frac{1}{2\Upsilon} u_a X^r \nabla_r \Upsilon \right] \\ \widetilde{\nabla}_e X_a &= \widetilde{\nabla}_e X_a - \frac{1}{\Upsilon} X_{(e} \widetilde{\nabla}_{a)} \Upsilon + \frac{1}{2\Upsilon} h_{ea} X^r \nabla_r \Upsilon \,. \end{split}$$

Thus the transformation of the kinematic quantities is

$$\begin{split} \bar{\Theta} &= \frac{1}{\sqrt{\Upsilon}} \left(\Theta + \frac{3}{2} \frac{\dot{\Upsilon}}{\Upsilon} \right) , \qquad \bar{a}_b = a_b + \frac{1}{2} \frac{\overline{\nabla}_b \Upsilon}{\Upsilon} ,\\ \bar{\sigma}_{ab} &= \sqrt{\Upsilon} \sigma_{ab} , \qquad \bar{\omega}_{ab} = \sqrt{\Upsilon} \omega_{ab} \end{split}$$

and the one of the thermodynamical ones

$$\bar{\mu} = T_{ab}\bar{u}^a\bar{u}^b = \frac{\mu}{\Upsilon}, \qquad \bar{p} = \frac{1}{3}T_{ab}\bar{h}_{ab} = \frac{p}{\Upsilon},$$
$$\bar{q}_a = -T_{bc}\bar{u}^b\bar{h}^{ca} = \frac{q_a}{\sqrt{\Upsilon}}, \qquad \bar{\pi}_{ab} = T_{cd}\bar{h}^c{}_{\langle a}\bar{h}^d{}_{b\rangle} = \pi_{ab}$$

With this we can transform all of the 1+3 equations...

1+3 Conformal Transformation

Let us look now at the field redefinition.

Resembles Einstein Lift experiment

The transformation of the kinetic quantity Υ in the matter field ϕ is the core of the physical change in the CTs.

1+3 CT and f(R)-gravity

When one performs the CT in f(R)-gravity...

- The accelerated observer dynamics is such to compensate most the effects of fourth order gravity
- Only terms that can be associated to the contribution of a scalar field are left...
- ...and of course the non minimal coupling with matter

Cosmological Perturbations

The 1+3 covariant approach allows to construct a covariant and gauge invariant theory of perturbations.

Exact 1+3 equations valid in any spacetime.

Choose background spacetime.

Linearize by dropping all terms that are O(2) and higher Variables that vanish in chosen background are O(1) and GI.

Scalar Perturbations variables

The basic set of scalar inhomogeneity variables is:

 $\Delta^m = \frac{S^2}{\mu^m} \widetilde{\nabla}^2 \mu^m \,, \qquad Z = S^2 \widetilde{\nabla}^2 \Theta \,, \qquad C = S^4 \widetilde{\nabla}^2 \widetilde{R},$

but one might need others, depending on the degrees of freedom of the theory analyzed. Also they are not independent.

Let see how they behave under CT

$$\begin{split} \overline{\Delta} &= \Upsilon \left(\Delta - S^2 \frac{\widetilde{\nabla}^2 \Upsilon}{\Upsilon} \right), \\ \overline{Z} &= \sqrt{\Upsilon} \left(Z - \frac{1}{2} S^2 \Theta \frac{\widetilde{\nabla}^2 \Upsilon}{\Upsilon} - \frac{9}{4} S^2 \frac{\dot{\Upsilon}}{\Upsilon} \frac{\widetilde{\nabla}^2 \Upsilon}{\Upsilon} + \frac{3}{2} S^2 \frac{\widetilde{\nabla}^2 \dot{\Upsilon}}{\Upsilon} \right), \\ \overline{C} &= \sqrt{\Upsilon} \left[C - 2 S^2 Z \frac{\dot{\Upsilon}}{\Upsilon} + S^3 \left(8\Theta \frac{\dot{\Upsilon}}{\Upsilon} + 9 \frac{\dot{\Upsilon}^2}{\Upsilon^2} - 2R_3 \right) \frac{\widetilde{\nabla}^2 \Upsilon}{\Upsilon} - S^3 \left(2\Theta + \frac{3\dot{\Upsilon}}{\Upsilon} \right) \frac{\widetilde{\nabla}^2 \dot{\Upsilon}}{\Upsilon} \right]. \end{split}$$

Scalar Perturbations of f(R)-gravity (Jordan Frame)

Let us now compare the perturbations in the two frames. The H-I background in JF can be described by

$$\begin{split} \Theta^2 &= 3\frac{\mu^m}{F} + 3\mu^R - \frac{3R_3}{2} \,,\\ \dot{\Theta} + \frac{1}{3}\Theta^2 + \frac{1}{2F}(\mu^m + 3p^m) + \frac{1}{2}(\mu^R + 3p^R) = 0 \,,\\ \dot{\mu}^m + \Theta \left(\mu^m + p^m\right) = 0 \,,\\ \dot{\mu}^R + \Theta \left(\mu^R + p^R\right) - \mu^m \frac{F'}{F^2} \dot{R} = 0 \,, \end{split}$$
 Where
$$\begin{split} \mu^R &= \frac{1}{F} \left[\frac{1}{2}(RF - f) - \Theta \dot{F} + \tilde{\nabla}^2 F \right] \,,\\ p^R &= \frac{1}{F} \left[\frac{1}{2}(f - RF) + \ddot{F} + \frac{2}{3}\Theta \dot{F} - \frac{2}{3}\tilde{\nabla}^2 F - a_b \tilde{\nabla}^b F \right] \end{split}$$

Scalar Perturbations of f(R)-gravity (JF)

 $\mathcal{R} = S^2 \widetilde{\nabla}^2 R \,,$ $\mathfrak{R} = S^2 \widetilde{\nabla}^2 \dot{R}$

The perturbations variables we need are

 Δ, Z, C

The perturbation equations can be then written as

$$\begin{split} \dot{\Delta}_{m}^{(\ell)} + \mathcal{A}\dot{\Delta}_{m}^{(\ell)} + \mathcal{B}\Delta_{m}^{(\ell)} &= \mathcal{C}\mathcal{R}^{(\ell)} + \mathcal{D}\dot{\mathcal{R}}^{(\ell)} ,\\ F'\dot{\mathcal{R}}^{(\ell)} + \dot{\mathcal{E}}\dot{\mathcal{R}}^{(\ell)} + \mathcal{F}\mathcal{R}^{(\ell)} &= \mathcal{G}\Delta_{m}^{(\ell)} + \mathcal{H}\dot{\Delta}_{m}^{(\ell)} \end{split}$$

- The coefficients are very complicated functions of first order quantities.
- This system present many difference with respect to the GR counterpart.

Scalar Perturbations of f(R)-gravity (Einstein Frame)

The H-I background can be described by

$$\begin{split} \bar{\Theta}^2 &= 3\bar{\mu}^m e^{\left(-\sqrt{2/3}\phi\right)} + 3\mu^{\phi} - \frac{3\bar{R}_3}{2} ,\\ \bar{\Theta}^{\dagger} &+ \frac{1}{3}\bar{\Theta}^2 + \frac{1}{2}(\bar{\mu}^m + 3\bar{p}^m)e^{\left(-\sqrt{2/3}\phi\right)} + \frac{1}{2}(\bar{\mu}^{\phi} + 3\bar{p}^{\phi}),\\ \bar{\mu}^{\dagger}_m &+ \bar{\Theta}\left(\bar{\mu}^m + \bar{p}^m\right) - \sqrt{\frac{2}{3}} \bar{\mu}^m \phi^{\dagger} - \frac{1}{\sqrt{6}}(3\bar{p}^m - \bar{\mu}^m)\phi^{\dagger} = 0 ,\\ \overline{\Box}\phi - W'(\phi) &= \frac{1}{\sqrt{6}}(3\bar{p}^m - \bar{\mu}^m) e^{\left(-\sqrt{2/3}\phi\right)} \end{split}$$

Where

$$\mu^{\phi} = \frac{1}{2} (\phi^{\dagger})^{2} + \frac{1}{2} \overline{\nabla}^{a} \phi \overline{\nabla}_{a} \phi + W(\phi) ,$$

$$p^{\phi} = \frac{1}{2} (\phi^{\dagger})^{2} - \frac{1}{6} \overline{\nabla}^{a} \phi \overline{\nabla}_{a} \phi - W(\phi) ,$$

Scalar Perturbations of f(R)-gravity (EF)

 $\bar{\Phi} = S^2 \overline{\nabla}^2 \phi \,,$ $\bar{\Psi} = S^2 \overline{\overline{\nabla}}^2 \phi^{\dagger}$

The perturbations variables we need are

 $\bar{\Delta},\, \bar{Z},\, ar{C}$

The perturbation equations can be then written as

$$\bar{\Delta}_{(\ell)}^{\dagger\dagger} = \mathcal{A} \,\bar{\Delta}_{(\ell)}^{\dagger} + \mathcal{B} \,\Delta_{(\ell)} + \mathcal{C} \,\bar{\Phi}_{(\ell)} + \mathcal{D} \,\bar{\Phi}_{(\ell)}^{\dagger},$$
$$\bar{\Phi}_{(\ell)}^{\dagger\dagger} = \mathcal{E} \,\bar{\Phi}_{(\ell)}^{\dagger} + \mathcal{F} \,\bar{\Phi}_{(\ell)} + \mathcal{G} \,\bar{\Delta}_{(\ell)} + \mathcal{H} \,\bar{\Delta}_{(\ell)}^{\dagger},$$

 The equations have a similar differential structure and the same scale dependence

They differ in the properties of the long wavelength limit as it was anticipated by the transformation of the variable C.

A worked example: Rⁿ-gravity.

Let us look to a concrete example based on a toy model:

$$L = \sqrt{-g} \left[\chi R^{n} + 2\mathcal{L}_{m}(\mathbf{J}, g^{ab}) \right]$$

$$\overline{L} = \sqrt{-\overline{g}} \left[\overline{R} - \overline{g}^{ab} \overline{\nabla}_{a} \phi \overline{\nabla}_{b} \phi - W_{0} e^{\sqrt{\frac{2}{3}} \frac{(n-2)}{1-n} \phi} + 2e^{-\frac{\phi}{\sqrt{6}}} \mathcal{L}_{m}(\mathbf{J}, \overline{g}^{ab}) \right]$$

The background transforms as

$$\bar{S} = S_0 \left(\frac{\bar{t}}{\bar{t}_0}\right)^{\frac{2n}{3(2n-3)(w+1)}} \qquad n \neq \frac{3}{2}$$
$$\phi = \phi_0 - \frac{1}{(2n-3)\lambda} \ln\left(\frac{\bar{t}^{2(n-1)}}{\chi}\right)$$

$$\bar{S} = \bar{S}_0(n,\chi) e^{\frac{(w+1)\bar{t}}{3\sqrt{6-6w\chi}}} \qquad n = \frac{3}{2}$$

$$\phi = \phi_0 - \frac{(w+1)\bar{t}}{3\sqrt{1-w\chi}}$$

A worked example: Rⁿ-gravity.

and we can compare the behavior of the LW matter fluctuations

there is a difference non only in the rate of growth...

...but also in the presence of oscillations

Conclusions

- We have used the covariant approach to investigate the physics behind the conformal transformations in cosmology
- We have discovered that these transformation can be seen as a change from an inertial to an accelerated observer and a field redefinition.
- The real change in the physics however only take place when one defines the new scalar field.
- We have seen the differences between the Einstein and the Jordan frame at background and perturbations level, discovering the key physical differences.

