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Outline

Conformal transformations

Conformal transformations and alternative gravity 
(specifically f(R)-gravity)

1+3 conformal transformation

transformation of the 1+3 covariant approach

Transformation of the CoGI theory of perturbations for 
f(R)-gravity

An example with a toy model
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Conformal transformations (CT)
Conformal transformations in Riemannian geometry are defined  as

gab → ḡab = Υ(t, x)gab

with Υ>0. They preserve angles and the signature of the manifold. 
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CTs are used in many different fields including Relativity 

They also have interesting applications in alternative gravity...
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Fourth Order Gravity 
In homogeneous and isotropic spacetimes a 
general Lagrangian for fourth order gravity in 
presence of matter is

L =
√
−g

[
f(R) + 2Lm(ג, gab)

]

varying with respect to the metric gives

where 

and F denotes the derivative of f  with respect to R.

F (R)Rab −
1
2

gabf(R) = F (R);cd

(
gc

agd
b − gabg

cd
)

+ Tm
ab

Tm
ab =

2√
−g

δ(
√
−gLm)
δgab
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They have recently been used to 
model  Dark Energy with some 
success...

f(R)-gravity and CT

CTs are  important for these models: they reduce complex 
theories of gravity to Einstein gravity plus a minimally coupled 
scalar field, which is easier to treat.

However one of the issues of 
these theories is their complexity 
due to the non linearities and the 
additional degrees of freedom. 

These theories emerge as low 
energy limit of fundamental 
theories, like M-theory or 
supergravity

6Friday, 3 July 2009



CT

Einstein
Frame

Jordan
Frame

CT in alternative gravity
In alternative gravity however a conformal transformation is not just 
the geometrical transformation showed above...

metric
transformation

field 
redefinition+

Initial set 
of metric and 

fields

Final set 
of metric and 

fields
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✴ A time-like flow ua  is introduced, e.g., the fluid flow of galaxy 
cluster or any fluid flow in cosmology or astrophysics. 

✴ The remaining spatial freedom is left untouched. 

The 1+3 covariant approach
(in brief) 

✴ From ua we construct the projection onto surfaces orthogonal to 
the flow:  hab=gab +uaub                            

✴ Three-volume form:                              ηabc = udηabcd

ua 
na 

hab✴ Covariant convective derivative and                                            
projected derivative:

Ẋc = ue∇eXc , ∇̃eXc = hp
c hr

e∇r Xq

8Friday, 3 July 2009



✴ A general energy-momentum tensor can be decomposed relative 
to  ua  and  hab 

Tab = µ ua ub + qa ub + ua qb + p hab + πab

flux
energy density pressure anisotropic pressure

✴ Obtain a set of propagation and constraint equations for these 
variables based on Ricci and Bianchi identities: the 1+3 
equations.        

✴ Covariant variables have an clear physical interpretation and can 
be used to investigate both the exact models and perturbations. 

acceleration expansion shear vorticity

✴ Kinematics of  ua  gives the kinematics of the model    

∇aub = −ua ab +
1
3

Θhab + σab + ωab
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clock rate variationrod length variationchange of observer acceleration

1+3 Conformal Transformation
Let us now see the conformal transformation in this formalism. 
We start with the geometric transformation.

gab → ḡab = Υ(t, x)gab ⇒






hab → h̄ab = Υhab

ua → ūa =
√

Υua

With this we can transform the derivatives...

X†
a =

1√
Υ

[
Ẋa −

1
Υ

ubX(b∇a)Υ +
1

2Υ
uaXr∇rΥ

]
,

∇̃eXa = ∇̃eXa −
1
Υ

X(e∇̃a)Υ +
1

2Υ
heaXr∇rΥ .
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µ̄ = Tabū
aūb =

µ

Υ
, p̄ =

1
3
Tabh̄ab =

p

Υ
,

q̄a = −Tbc ūb h̄ca =
qa√
Υ

, π̄ab = Tcd h̄c
〈a h̄d

b〉 = πab

Thus the transformation of the kinematic quantities is

With this we can transform all of the 1+3 equations...

and the one of  the thermodynamical ones

Θ̄ =
1√
Υ

(
Θ +

3
2

Υ̇
Υ

)
, āb = ab +

1
2
∇bΥ
Υ

,

σ̄ab =
√

Υσab , ω̄ab =
√

Υωab
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1+3 Conformal Transformation

Υ    φ

Accelerated 
observer

Inertial 
Observer

+
New 

Interaction}Resembles
Einstein Lift
experiment 

The transformation of the kinetic quantity Υ in the matter field φ is 
the core of the physical change in  the CTs.

Let us look now at the field redefinition.
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1+3 CT and f(R)-gravity
When one performs the CT in f(R)-gravity...

Υ    φF

The accelerated observer dynamics is such to compensate 
most the effects of fourth order gravity

Only terms that can be associated to the contribution of a 
scalar field are left...

...and of course the non minimal coupling with matter

13Friday, 3 July 2009



Cosmological Perturbations
The 1+3 covariant approach allows to construct a covariant and 
gauge invariant theory of perturbations.

Exact 1+3 equations 
valid in any spacetime.

Choose background 
spacetime.

Variables that vanish 
in chosen background 

are O(1) and GI.

Linearize by dropping 
all terms that are O(2)     

and higher. 
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Scalar Perturbations variables
 The basic set of scalar inhomogeneity variables is:

but one might need others, depending on the degrees of 
freedom of the theory analyzed. Also they are not independent.

Let see how they behave under CT

∆m =
S2

µm
∇̃2µm , Z = S2∇̃2Θ , C = S4∇̃2R̃,

∆ =Υ

(
∆− S2 ∇̃2Υ

Υ

)
,

Z =
√

Υ

(
Z − 1

2
S2Θ

∇̃2Υ
Υ

− 9
4
S2 Υ̇

Υ
∇̃2Υ
Υ

+
3
2
S2 ∇̃2Υ̇

Υ

)
,

C =
√

Υ

[
C − 2S2Z

Υ̇
Υ

+ S3

(
8Θ

Υ̇
Υ

+ 9
Υ̇2

Υ2
− 2R3

)
∇̃2Υ
Υ

− S3

(
2Θ +

3Υ̇
Υ

)
∇̃2Υ̇
Υ

]
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Scalar Perturbations of f(R)-gravity
(Jordan Frame)

Θ2 = 3
µm

F
+ 3µR − 3R3

2
,

Θ̇ + 1
3Θ2 + 1

2F (µm + 3pm) + 1
2 (µR + 3pR) = 0 ,

µ̇m + Θ (µm + pm) = 0 ,

µ̇R + Θ (µR + pR)− µm F ′

F 2
Ṙ = 0 ,

Let us now compare the perturbations in the two frames. The 
H-I background in JF can be described by

Where
µR =

1
F

[
1
2
(RF − f)−ΘḞ + ∇̃2F

]
,

pR =
1
F

[
1
2
(f −RF ) + F̈ +

2
3
ΘḞ − 2

3
∇̃2F − ab∇̃bF

]
,
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Scalar Perturbations of f(R)-gravity (JF)

∆̈(!)
m +A∆̇(!)

m + B∆(!)
m = CR(!) +DṘ(!) ,

F ′R̈(!) + EṘ(!) + FR(!) = G∆(!)
m +H∆̇(!)

m

The perturbation equations can be then written as

The coefficients are very complicated functions of first order 
quantities.

This system present many difference with respect to the GR 
counterpart.

+ R = S2∇̃2R ,

" = S2∇̃2Ṙ

The perturbations  variables we need are

∆, Z, C
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Scalar Perturbations of f(R)-gravity
(Einstein Frame)

The H-I background can be described by

Where
µφ =

1
2
(φ†)2 +

1
2
∇̃ aφ∇̃aφ + W (φ) ,

pφ =
1
2
(φ†)2 − 1

6
∇̃ aφ∇̃aφ−W (φ) ,

Θ̄2 = 3µ̄me

“
−
√

2/3φ
”

+ 3µφ − 3R̄3

2
,

Θ̄† + 1
3 Θ̄2 + 1

2 (µ̄m + 3p̄m)e
“
−
√

2/3φ
”

+ 1
2 (µ̄φ + 3p̄φ),

µ̄†
m + Θ̄ (µ̄m + p̄m)−

√
2
3

µ̄mφ† − 1√
6
(3p̄m − µ̄m)φ† = 0 ,

!φ−W ′(φ) =
1√
6
(3p̄m − µ̄m) e

“
−
√

2/3φ
”
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The perturbations  variables we need are

Scalar Perturbations of f(R)-gravity (EF)

+ Φ̄ = S2∇̃ 2φ ,

Ψ̄ = S2∇̃ 2φ†

The equations have a similar  differential structure and the 
same scale dependence

They differ in the properties of the long wavelength limit as it 
was anticipated by the transformation of the variable C.

The perturbation equations can be then written as

∆̄††
(!) = A ∆̄†

(!) + B ∆(!) + C Φ̄(!) +D Φ̄†
(!) ,

Φ̄††
(!) = E Φ̄†

(!) + F Φ̄(!) + G ∆̄(!) +H ∆̄†
(!)

∆̄, Z̄, C̄
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A worked example: Rn-gravity.
Let us look to a concrete example based on a toy model:

L =
√
−g

[
χRn + 2Lm(ג, gab)

]

S = S0

(
t

t0

) 2n
3(1+w)

The background
S̄ = S0

(
t̄

t̄0

) 2n
3(2n−3)(w+1)

φ = φ0 −
1

(2n− 3)λ
ln

(
t̄ 2(n−1)

χ

)

S̄ = S̄0(n, χ) e
(w+1)t̄

3
√

6−6wχ

φ = φ0 −
(w + 1)t̄

3
√

1− wχ

{
transforms as

n != 3
2

n =
3
2

L̄ =
√
−ḡ

[
R̄− ḡab∇aφ∇bφ−W0e

√
2
3

(n−2)
1−n φ + 2e−

φ√
6Lm(ג, ḡab)

]
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A worked example: Rn-gravity.
and we can compare the behavior of the  LW matter fluctuations 

         JF                                                                  EF
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0.00004
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0.2 0.4 0.6 0.8 1.0
t

0.0002
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0.0008

0.0010

!!m! n ! 1.1

there is a difference non only in the rate of growth...
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         JF                                                                   EF

15 20 25
t!

0.0001

0.0002
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!"m! n ! 1.4

0.2 0.4 0.6 0.8 1.0
t
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0.00001
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...but also in the presence of oscillations
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Conclusions

We have used the covariant approach to investigate the 
physics behind the conformal transformations in cosmology

We have discovered that  these transformation can be seen as 
a change from an inertial to an accelerated observer and a 
field redefinition.

The real change in the physics however only take place when 
one defines the new scalar field. 

We have seen the differences between the Einstein and the 
Jordan frame at background and perturbations level, 
discovering the key  physical differences.

23Friday, 3 July 2009


