## Conformal Transformations: The <br> Covariant Approach Perspective

## Sante Carloni

S. Odintsov
E. Elizalde

Barcelona

The lnvisible: Uhiverse
Paris 03/07/2009
 Friday, 3 July 2009

## Outline

- Conformal transformations
- Conformal transformations and alte inative gravity (specifically f(R) ) oravity)
- $1+3$ conformal transformation
- transformation of the $1+3$ covariant approach
- Transformation of the CoGl theory of perturbations for f(R) gravity
- An example with a toy model


## Conformal transformations (OT)

Conformal transformations in Riemannian geometry are défined as
with $r>0$. They preserve angles and the signature of the manifold


* CTs are used in many different fields including Relativity

- They also have interesting applications in alternative gravity..


# Fourth Order Gravity 

In homogeneous and isotropic spacetimes a general Lagrangian for fourth order gravity in presence of matter is

$$
L=\sqrt{-2}\left(f(R)+2 C^{2}\left({ }^{2} g^{\alpha b}\right.\right.
$$


varying with respect to the metric gives
where
and $F$ denotes the derivative of $f$ with respect to $R$.

## f(R)-gravity and OT

- These theories emerge as low energy limit of fundamental theories, like M-theory or supergravity
*They have recently been used to model Dark: Energy with some success:

4 However one of the issies iof these theories is their complexty due to the non linearities and the additional degrees of freedom.

"I'm warning you Perkins - your flagrant disregard for the laws of physics will not be tolerated!

- CTS are important for these models: they reduce complex theories of gravity to: Einstein gravity plus a minimally coupled scalar field, which is easier to treat. $\qquad$


## CT in alternative gravity

- In alternative gravity however a conformal transformation is not just the geometrical transformation showed above:
Jordan



## The $1+3$ covariant approach (in brief)

* A time like flow $u$ is introduced, e $g$, the fluid flow of galaxy cluster or any fluid flow in cosmology or astrophysics.
* The remaining spatialficecoondsicituitotiched:

From ue we construct the projection onto surfaces orthogonal to


Three-volume form haob = $u$ toibed
Covariant convective derivative and projected derivative:

$$
X_{c}=u^{e} \nabla_{i} X{ }_{c}{ }_{c} ;=\bar{\nabla}_{i} X_{c}=h^{p}{ }_{c} h^{r}{ }_{e} \nabla_{r} X_{q}
$$



ET

* Kinematics of $u^{a}$ gives the kinematics of the model
* A general energy momentum tensor can be decomposed relative to $u^{d}$ and $h_{a b}$

Obtain a set of propagation and constraint equations for these variables based on Ricci and Bianch identities the $1+3$ equations:

Covariant variables have an clear physical interpretation and can be used to investigate both the exact models and perturbations.

## $1+3$ Conformal Transformation

* Let us now see the conformal transformation in this formalism. We start with the geometric transformation.
change of observer coldoceleratioation
- With this we can transform the dervatives

Thus the transformation of the kinematic quantities is

$$
\begin{aligned}
& \sigma_{a b}=\sqrt{\Upsilon} \sigma_{a b} \\
& \omega_{a b}=\sqrt{\Upsilon} \omega_{a b}
\end{aligned}
$$

and the one of the thermodyamical ones

$$
\begin{aligned}
& \left.\pi_{a b}=T_{c d} h^{c}{ }^{(a} h^{d}{ }_{b}\right\rangle=\pi_{a b}
\end{aligned}
$$

- With this we can transform all of the $1+3$ equations...


## 1+3 Conformal Transiomation

- Let us look now at the field redéfinition.

*The transformation of the kinetic quantity $\Upsilon$ in the matter field $\phi$ is the core of the physical change in the CTS.


## $1+3$ CT and f(R)-gravity

* When one performs the CTin $f(\mathrm{R})$ gravity

$\phi$
- The accelerated oserver dyamiosis such to compensate most the effects:ofouthoorder:gavity
- Only terms that can be associated to the contribution of a scalar fieldare left:
- and of course the non minimal coupling with matter


## Cosmological Perturbations

The $1+3$ covariant approach allows to construct a covariant and gauge invariant theory of perturbations.

Exact $1+3$ equations valid in any spacetime.

Choose background spacetime.

Variables that vanish in chosen background are $\mathrm{O}(1)$ and GI .

## Scalar Perturbations variables

The basic set of scalar inhomogeneity variables is:

$$
\Delta^{m}=\frac{S^{2}}{\mu^{m}} \bar{\nabla}^{2} \mu^{m}, z=S^{2} \bar{\nabla}^{2} \theta, \quad C=S^{4} \bar{\nabla}^{2} \hat{R}
$$

but one might need others, depending on the degrees of freedom of the theory analyzed. Also they are not independent.

Let see how they behave under CT

$$
\begin{aligned}
& \Delta=r\left(=-s^{2} \frac{\nabla^{2} r}{r}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \bar{C}=-\sqrt{r}\left[C=2 S^{2} Z \frac{\Gamma}{r}+S^{3}\left(8 \theta \frac{\Upsilon}{r}+9 \frac{\Upsilon^{2}}{r^{2}}-2 R_{3}\right) \frac{\widetilde{\nabla}^{2} \Upsilon}{r}-S^{3}\left(2 \Theta+\frac{3 \dot{\Upsilon}}{\Upsilon}\right) \frac{\tilde{\nabla}^{2} \dot{\Upsilon}}{\Upsilon}\right]
\end{aligned}
$$

## Scalar Perturbations of $f(P)$-gravity (Jordan Frame)

Let us now compare the perturbations in the two frames. The H-I background in JF can be described by

$$
\begin{aligned}
& \Theta+\frac{1}{3} \Theta^{2}+\frac{4}{2 m}(\mu+3 p m)+1\left(\mu^{R}+3 p^{R}\right)=0 \\
& \mu^{m}=\Theta\left(\mu^{m}, p, m\right)=0
\end{aligned}
$$

Where

$$
\begin{aligned}
& \left.p_{p}^{R}=\frac{1}{2}(f=R F)+\stackrel{F}{2}+\frac{2}{3} \Theta \tilde{F}-\frac{2}{3} \nabla^{2} F-a_{b} \widetilde{\nabla}^{b} F\right]
\end{aligned}
$$

## Scalar Perturbations of f(R)-gravity (JF)

The perturbations variables we need are

$$
\Delta, Z, C
$$

$$
\begin{aligned}
& \mathcal{R}=S^{2} \widetilde{\nabla}^{2} R, \\
& \Re=S^{2} \widetilde{\nabla}^{2} \dot{R}
\end{aligned}
$$

The perturbation equations can be then witten as

$$
\begin{aligned}
& \Delta(\theta)=4 \Delta(\theta) \quad \beta .
\end{aligned}
$$

- The coefficients are very complicated functions of first order quantities.
- This system present many difference with respect to the GR counterpart:


## Scalar Perturbations of f(R)-gravity (Einstein Frame)

The H-I background can be described by

Where

$$
\begin{aligned}
& { }^{\phi} \phi=\frac{1}{2}\left(\phi^{\dagger}\right)^{2}-\quad \frac{1}{6} \tilde{\nabla}^{a} \phi \tilde{\nabla}_{a} \phi-W(\phi) \text {, }
\end{aligned}
$$

## Scalar Perturbations of $f(R)$-gravity (EF)

The perturbations variables we need are

$$
\begin{aligned}
& \bar{\Delta}, \bar{Z}, \bar{C} \quad \bar{\Phi}=S^{2} \bar{\nabla}^{2} \phi, \\
& \bar{\Psi}=S^{2} \widetilde{\nabla}^{2} \phi^{\dagger}
\end{aligned}
$$

The perturbation equations can be then writen as

- The equations have a similar differential structure and the same scale dependence
- They differ in the properties of the long wavelength limit as it was anticipated by the transformation of the variable C.


## A worked example: R$^{n}$-gravity.

Let us look to a concrete example based on a toy model.
L

The background transforms as

$$
\begin{aligned}
& S=S_{0}(n, \chi) e^{\frac{(w+1) t}{3 \sqrt{6-6 w \chi}}} \\
& \phi=\phi_{0}-\frac{(w+1) \bar{t}}{3 \sqrt{1-w} x} \\
& n=\frac{3}{2}
\end{aligned}
$$

## A worked example: $\mathrm{R}^{\mathrm{n}}$-gravity.

 and we can compare the behavior of the E matter fluctuations
there is a differencenonony in the rate of growth..
...but also in the presence of oscillations


## Conclusions

* We have used the covariant approach to investigate the physics behind the conformal transformations cosmology
- We have discovered that these transformation can be seen as a change from an inerfal to an accelerated observer and a field redefinition:
- The real change in the physics however only take place when one defines the new scalar field:
- We have seen the differences between the Enstein and the Jordan frame at background and perturbations level, discovering the key physical differences.

