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Motivation

Challenges

Variations vs. gravitation

Cosmological effects and bounds

some of own work:

• TD, S. Stern & C. Wetterich, “Competing bounds on the present-day variation of fundamental
constants”, 0812.4130 (PRD)

• TD, S. Stern & C. Wetterich, “Time variation of fundamental couplings and dynamical dark
energy”, 0809.4628 (JHEP)

• TD, S. Stern & C. Wetterich, “Unifying cosmological and recent time variations of fundamental
couplings”, 0808.0702 (PRD)

• TD, “Eötvös bounds on coupling of fundamental parameters to gravity”, 0805.0318 (PRL)
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Motivation
5σ deviation of fine structure constant α from present value over redshift 0.2–4.2

(∆α)/α = (−0.57± 0.11) · 10−5 Murphy et al. 2001-2003

No conclusive counter-evidence

Nonzero variation⇒ New cosmic dynamics

• New source of energy-momentum – “dark”?
• Different fundamental “constants” at different points in spacetime breaks Einstein

equivalence principle (Local Position Invariance)
• Gravity must be modified
• Weak Equivalence Principle (“universal free fall”) is violated
• Connections between

1. Recent cosmological time variation (z . 0.5)
2. Equivalence Principle bounds today
3. “Dark Energy” parameters: nonzero variation implies w 6= −1
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Alpha: measurement methods

QSO

absorption system, z = z_abs

ωz = ω0 + q

»“αz
α

”2
− 1

–
“Many-multiplet” method: species with different q coefficients
(Murphy et al. astro-ph/0209488)

Latest published result, 143 systems (astro-ph/0310318)

∆α

α
= (−0.57± 0.11) · 10−5, 0.2 < zabs < 4.2
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Alpha data

Further VLT/UVES results expected . . .
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Laboratory challenges
Atomic clocks bound present-day time variation
NIST compares Al/Hg ion transition frequencies

α̇

α
|today = (−1.6± 2.3)× 10−17 y−1 Rosenband et al. Science (2008)

Rules out linear time variation for Murphy results

Also stringent bounds for z ≤ 0.5 from Oklo, meteorites

• More complex or realistic dynamics – “braking”?
• We tried to fit “crossover quintessence” and “growing neutrino” models with

variations – 0809.4628
• Spatial variation? . . .

Here we consider slow, (nearly) homogeneous time variation
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Particle physics challenges?
α derived from Standard Model: O(20) parameters
Unification (GUT) implies all gauge couplings should vary

µ ≡
mp

me

sensitive to SU(3) strong coupling Calmet/Fritzsch, Langacker et al. 2001

expect ∆ lnµ� ∆ lnα without fine-tuning

Strong observational bounds! eg H2

∆µ

µ
= (2.6± 3.0)× 10−6, 2 ≤ z ≤ 3.5 King et al. PRL 2008

Molecular spectra

∆µ

µ
= (0.08± 0.47)× 10−6, z = 0.89 Henkel et al. A&A 2009

NH3 spectrum constraint˛̨̨̨
∆µ

µ

˛̨̨̨
≤ 1.8× 10−6 (2σ), z = 0.68 Murphy et al. , Science 2008
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Basic theoretical problems
Differing fundamental “constants” at different points in spacetime breaks
Einstein equivalence principle (Local Position Invariance)

Free function α(~x, t) breaks QFT: variational principle, symmetry, conservation laws

No predictions for anything in Universe, infinite # of DOF

Need new dynamics! α, µ,. . . are scalar quantities⇒ scalar field ϕ

• Generally covariant theories with “varying constants”
• GR plus scalar field weakly coupled to radiation and matter

– “scalar-tensor”
• Nonzero variation requires non-universal scalar coupling to matter

Not equivalent to Brans-Dicke
• (W)EP violation appears as scalar-mediated forces
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Theoretical setup and scalar couplings
Effective action for dimensionless scalar ϕ ≡ Φ/MP coupled to matter
valid for large distance / long time

L = M2
P

`
R+ 1

2
(∂ϕ)2

´
+M4

PV (ϕ)− Vϕm + Lem + · · ·

Electromagnetic action:

Lem = −
1

4

1

α(ϕ)
FµνF

µν

Matter coupling action Vϕm gives mass mb(ϕ) to particles

Define coupling strength for particle / object, mass Mb:

λb ≡
d

dϕ
ln
Mb

MP

Mb depends on mp, me, mn, Bem ∝ α, Bnuc . . .
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Scalar equation of motion & approximations
ϕ(~x, t) in expanding cosmological background, H(t)→ Hubble rate

ϕ̈+ 3Hϕ̇− ~∇2ϕ = −M2
PV
′(ϕ)−

X
b

ρb

M2
P

λb(ϕ)

Can define “Effective potential” due to matter

Veff ≡ V (ϕ) +
P
b nb(~x, t)mb(ϕ)

Divide ρb and ϕ into homogeneous average + fluctuations:

ρ̄b(t) + δρb(~x, t), ϕ̄b(t) + δϕb(~x, t)

• Cosmological evolution: throw away ~∇2 ⇒ equation for ϕ̄
• Local evolution of light scalar (M2

PV
′′(ϕ)� 1/R2, λb � 1): Poisson equation

~∇2δϕ(~x) '
X
b

δρb(~x)λb(ϕ̄)

Compare Newtonian potential: ~∇2U(~x) = 4πGρ(~x)
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Forces from local variations & Eötvös
For light weakly coupled scalars δϕ(~x) behaves like U(~x) near a lump of matter.

A test body Mb will see its mass depend on position:

~a = −
~∇(Mb/MP )

Mb
= −λb ~∇ϕ = −2λbλs ~∇U = 2λbλs~g

Acceleration due to ϕ! “Fifth force” Fϕ/FNewton = 2λsλb.

Bound on universal scalar coupling in Solar System: Cassini

λ2 ≤ 5× 10−5

Varying couplings or mass ratios⇒ non-universal couplings λb!

WEP: objects of different composition free-fall the same way

Test bodies Mb, Mc

η ≡
|ab − ac|
|g|

= 2λs(λb − λc)

Bound η = (0.3± 1.8)× 10−13 (Schlamminger et al. 2008)

bodies of Be, Ti composition, source is Earth
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Fundamental parameters
We identified 6 dimensionless fundamental parameters Gk

1. GN (×Λ2
c )

2. α

3. 〈φ〉 (/Λc)

4. me (/Λc)

5. δq ≡ md −mu (/Λc) – controls n – p mass difference

6. m̂ ≡ 1
2

(md +mu) (/Λc) – controls mπ , nuclear forces

NB Λc is “QCD strong coupling scale”

Dependence of observables on Gk can be estimated

Correlated variations of Gk in unified models
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Fundamental coupling functions
Proportionality assumption:

∆ lnGk = dk × l(~x, t) ' dkβX(ϕ(~x, t)− ϕ0)

βX ⇒ coupling of unified model to ϕ

d lnGk

dϕ
≡ βk = dkβX

Proportionality factors dk define a “scenario” of variation

Test body couplings λb ∝ βX
thus:

η = 2C[dk]β2
X = C′[dk]

„
α̇

α

«2

ϕ̇−2
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Scalar mass and kinetic energy
EOM for (homogeneous) scalar

ϕ̈+ 3Hϕ̇ = −V ′eff(ϕ, ρm)

If V (ϕ) includes mass term −m2Φ2 then obtain damped oscillation, ω ' m/2π
For nontrivial cosmological drift require m . H: very long range

Bound on ϕ̇ from kinetic energy (Dvali & Zaldarriaga 2001)

T =
1

2
ϕ̇2, V = V (ϕ)

thus

ϕ̇

H
'
q

3Ωϕ(1 + wϕ)

Expansion history of Universe bounds Ω, w above: estimate

ϕ̇ ≤ ϕ̇max ' 3.5× 10−11 y−1

Bounds on η set limits on λ and on present-day / recent variations!
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Bound on ϕ energy density and EOS

0.0

0.0

–0.5

–1.0

–1.5
0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

WMAP
WMAP+SDSS
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WMAP+SN(HST/GOODS)
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WMAP+SN(SNLS)

w

0.0

–0.5
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–1.5

w

Spergel et al. 2006
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Bounds on recent variation

˛̨̨̨
α̇

10−15 y−1

˛̨̨̨
=

˛̨̨̨
Ωϕ(1 + wϕ)

F [dk]

˛̨̨̨1/2 „ η

3.8× 10−12

«1/2

F is “unification factor”: relation between α- and mass-variations

Bounds come from gravitational effects alone!



Motivation Challenges Variations vs. gravitation Cosmological effects and bounds

Nonzero variation rules out w = −1
If there is a non-zero present time variation the scalar must have kinetic energy

Ωϕ(1 + wϕ) ≥ 3.8× 1018F

„
α̇/α

y−1

«2

η−1
max

ηmax is experimental limit

Disproof of pure Λ as “dark energy”
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Conclusions and other directions
∗ Need to know if a slow cosmological time variation of α exists

∗ Need many probes: different z, different environments

∗ Purely gravitational effects bound (recent) variations

∗ Atomic clocks could put bounds on w with nonzero variation

Variation could be due to environment-dependent variation (Olive / Pospelov)

probe with entirely different methods – clocks in vacuum chambers . . .

“Chameleons” / local variation models modify short distance gravity
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