Challenges

Variations vs. gravitation

What varying constants and Equivalence Principle violation mean for Dark Energy

Thomas Dent With S. Stern, C. Wetterich

Cardiff University

The Invisible Universe in Paris, June 29 - July 3 2009

Challenges

Variations vs. gravitation

Cosmological effects and bounds

some of own work:

- TD, S. Stern & C. Wetterich, "Competing bounds on the present-day variation of fundamental constants", 0812.4130 (PRD)
- TD, S. Stern & C. Wetterich, "Time variation of fundamental couplings and dynamical dark energy", 0809.4628 (JHEP)
- TD, S. Stern & C. Wetterich, "Unifying cosmological and recent time variations of fundamental couplings", 0808.0702 (PRD)
- TD, "Eötvös bounds on coupling of fundamental parameters to gravity", 0805.0318 (PRL)

 5σ deviation of fine structure constant α from present value over redshift 0.2–4.2

 $(\Delta \alpha)/\alpha = (-0.57 \pm 0.11) \cdot 10^{-5}$ Murphy et al. 2001-2003

No conclusive counter-evidence

Nonzero variation \Rightarrow New cosmic dynamics

- New source of energy-momentum "dark"?
- Different fundamental "constants" at different points in spacetime breaks Einstein equivalence principle (Local Position Invariance)
- Gravity must be modified
- Weak Equivalence Principle ("universal free fall") is violated
- Connections between
 - 1. Recent cosmological time variation ($z \leq 0.5$)
 - 2. Equivalence Principle bounds today
 - 3. "Dark Energy" parameters: nonzero variation implies w
 eq -1

 5σ deviation of fine structure constant α from present value over redshift 0.2–4.2

 $(\Delta \alpha)/\alpha = (-0.57 \pm 0.11) \cdot 10^{-5}$ Murphy et al. 2001-2003

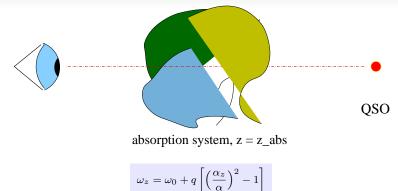
No conclusive counter-evidence

Nonzero variation \Rightarrow New cosmic dynamics

- New source of energy-momentum "dark"?
- Different fundamental "constants" at different points in spacetime breaks Einstein equivalence principle (Local Position Invariance)
- Gravity must be modified
- Weak Equivalence Principle ("universal free fall") is violated
- Connections between
 - 1. Recent cosmological time variation ($z \leq 0.5$)
 - 2. Equivalence Principle bounds today
 - 3. "Dark Energy" parameters: nonzero variation implies $w \neq -1$

Variations vs. gravitation

Alpha: measurement methods

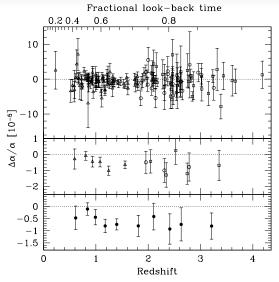


"Many-multiplet" method: species with different q coefficients (Murphy et al. astro-ph/0209488)

Latest published result, 143 systems (astro-ph/0310318)

$$\frac{\Delta \alpha}{\alpha} = (-0.57 \pm 0.11) \cdot 10^{-5}, \qquad 0.2 < z_{abs} < 4.2$$

Alpha data



Further VLT/UVES results expected ...

Laboratory challenges

Atomic clocks bound present-day time variation

NIST compares AI/Hg ion transition frequencies

$$\frac{\dot{\alpha}}{\alpha}|_{\text{today}} = (-1.6 \pm 2.3) \times 10^{-17} \,\text{y}^{-1}$$
 Rosenband et al. Science (2008)

Rules out linear time variation for Murphy results

Also stringent bounds for $z \leq 0.5$ from Oklo, meteorites

- More complex or realistic dynamics "braking"?
- We tried to fit "crossover quintessence" and "growing neutrino" models with variations 0809.4628
- Spatial variation? ...

Here we consider slow, (nearly) homogeneous time variation

Laboratory challenges

Atomic clocks bound present-day time variation

NIST compares AI/Hg ion transition frequencies

$$\frac{\dot{\alpha}}{\alpha}|_{\text{today}} = (-1.6 \pm 2.3) \times 10^{-17} \,\text{y}^{-1} \qquad \text{Rosenband et al. Science (2008)}$$

Rules out linear time variation for Murphy results

Also stringent bounds for $z \leq 0.5$ from Oklo, meteorites

- More complex or realistic dynamics "braking"?
- We tried to fit "crossover quintessence" and "growing neutrino" models with variations 0809.4628
- Spatial variation? ...

Here we consider slow, (nearly) homogeneous time variation

Particle physics challenges?

 α derived from Standard Model: $\mathcal{O}(20)$ parameters

Unification (GUT) implies all gauge couplings should vary

$$\mu \equiv \frac{m_p}{m_e}$$

sensitive to SU(3) strong coupling Calmet/Fritzsch, Langacker et al. 2001 expect $\Delta \ln \mu \gg \Delta \ln \alpha$ without fine-tuning

Strong observational bounds! eg H_2

$$\frac{\Delta \mu}{\mu} = (2.6 \pm 3.0) \times 10^{-6}, \ 2 \le z \le 3.5$$
 King et al. PRL 2008

Molecular spectra

$$\frac{\Delta \mu}{\mu} = (0.08 \pm 0.47) \times 10^{-6}, \ z = 0.89$$
 Henkel et al. A&A 2009

NH₃ spectrum constraint

$$\left|\frac{\Delta\mu}{\mu}\right| \leq 1.8 imes 10^{-6} \; (2\sigma), \; z=0.68$$
 Murphy et al. , Science 2008

Particle physics challenges?

 α derived from Standard Model: $\mathcal{O}(20)$ parameters

Unification (GUT) implies all gauge couplings should vary

$$\mu \equiv \frac{m_p}{m_e}$$

sensitive to SU(3) strong coupling Calmet/Fritzsch, Langacker et al. 2001 expect $\Delta \ln \mu \gg \Delta \ln \alpha$ without fine-tuning

Strong observational bounds! eg H_2

$$\frac{\Delta \mu}{\mu} = (2.6 \pm 3.0) \times 10^{-6}, \ 2 \le z \le 3.5$$
 King et al. PRL 2008

Molecular spectra

$$\frac{\Delta \mu}{\mu} = (0.08 \pm 0.47) \times 10^{-6}, \ z = 0.89$$
 Henkel et al. A&A 2009

NH₃ spectrum constraint

$$\left|rac{\Delta\mu}{\mu}
ight| \leq 1.8 imes 10^{-6} \; (2\sigma), \; z=0.68$$
 Murphy et al. , Science 2008

Basic theoretical problems

Differing fundamental "constants" at different points in spacetime breaks Einstein equivalence principle (Local Position Invariance)

Free function $\alpha(\vec{x}, t)$ breaks QFT: variational principle, symmetry, conservation laws No predictions for anything in Universe, infinite # of DOF

Need new dynamics! α , μ ,... are scalar quantities \Rightarrow scalar field φ

- Generally covariant theories with "varying constants"
- GR plus scalar field weakly coupled to radiation and matter – "scalar-tensor"
- Nonzero variation requires non-universal scalar coupling to matter Not equivalent to Brans-Dicke
- (W)EP violation appears as scalar-mediated forces

Basic theoretical problems

Differing fundamental "constants" at different points in spacetime breaks Einstein equivalence principle (Local Position Invariance)

Free function $\alpha(\vec{x}, t)$ breaks QFT: variational principle, symmetry, conservation laws

No predictions for anything in Universe, infinite # of DOF

Need new dynamics! α , μ ,... are scalar quantities \Rightarrow scalar field φ

- · Generally covariant theories with "varying constants"
- GR plus scalar field weakly coupled to radiation and matter – "scalar-tensor"
- Nonzero variation requires non-universal scalar coupling to matter Not equivalent to Brans-Dicke
- (W)EP violation appears as scalar-mediated forces

Theoretical setup and scalar couplings

Effective action for dimensionless scalar $\varphi \equiv \Phi/M_P$ coupled to matter valid for large distance / long time

$$\mathcal{L} = M_P^2 \left(R + \frac{1}{2} (\partial \varphi)^2 \right) + M_P^4 V(\varphi) - V_{\varphi m} + \mathcal{L}_{em} + \cdots$$

Electromagnetic action:

$$\mathcal{L}_{\rm em} = -\frac{1}{4} \frac{1}{\alpha(\varphi)} F_{\mu\nu} F^{\mu\nu}$$

Matter coupling action $V_{\varphi m}$ gives mass $m_b(\varphi)$ to particles

Define coupling strength for particle / object, mass M_b :

$$\lambda_b \equiv \frac{d}{d\varphi} \ln \frac{M_b}{M_P}$$

 M_b depends on m_p , m_e , m_n , $B_{em} \propto \alpha$, B_{nuc} ...

Scalar equation of motion & approximations

 $\varphi(\vec{x},t)$ in expanding cosmological background, $H(t) \rightarrow$ Hubble rate

$$\ddot{\varphi} + 3H\dot{\varphi} - \vec{\nabla}^2 \varphi = -M_P^2 V'(\varphi) - \sum_b \frac{\rho_b}{M_P^2} \lambda_b(\varphi)$$

Can define "Effective potential" due to matter

$$V_{\text{eff}} \equiv V(\varphi) + \sum_{b} n_b(\vec{x}, t) m_b(\varphi)$$

Divide ρ_b and φ into homogeneous average + fluctuations:

$$\bar{\rho}_b(t) + \delta \rho_b(\vec{x}, t), \qquad \bar{\varphi}_b(t) + \delta \varphi_b(\vec{x}, t)$$

- Cosmological evolution: throw away $ec{
 abla}^2 \Rightarrow$ equation for $ar{arphi}$
- Local evolution of light scalar $(M_P^2 V''(\varphi) \ll 1/R^2, \lambda_b \ll 1)$: Poisson equation

$$\vec{\nabla}^2 \delta \varphi(\vec{x}) \simeq \sum_b \delta \rho_b(\vec{x}) \lambda_b(\bar{\varphi})$$

Compare Newtonian potential: $\vec{\nabla}^2 U(\vec{x}) = 4\pi G \rho(\vec{x})$

Scalar equation of motion & approximations

 $\varphi(\vec{x},t)$ in expanding cosmological background, $H(t) \rightarrow$ Hubble rate

$$\ddot{\varphi} + 3H\dot{\varphi} - \vec{\nabla}^2 \varphi = -M_P^2 V'(\varphi) - \sum_b \frac{\rho_b}{M_P^2} \lambda_b(\varphi)$$

Can define "Effective potential" due to matter

$$V_{\text{eff}} \equiv V(\varphi) + \sum_{b} n_b(\vec{x}, t) m_b(\varphi)$$

Divide ρ_b and φ into homogeneous average + fluctuations:

$$\bar{\rho}_b(t) + \delta \rho_b(\vec{x}, t), \qquad \bar{\varphi}_b(t) + \delta \varphi_b(\vec{x}, t)$$

- Cosmological evolution: throw away $ec{
 abla}^2 \Rightarrow$ equation for $ar{arphi}$
- Local evolution of light scalar $(M_P^2 V''(\varphi) \ll 1/R^2, \lambda_b \ll 1)$: Poisson equation

$$\vec{\nabla}^2 \delta \varphi(\vec{x}) \simeq \sum_b \delta \rho_b(\vec{x}) \lambda_b(\bar{\varphi})$$

Compare Newtonian potential: $\vec{\nabla}^2 U(\vec{x}) = 4\pi G \rho(\vec{x})$

Forces from local variations & Eötvös

For light weakly coupled scalars $\delta \varphi(\vec{x})$ behaves like $U(\vec{x})$ near a lump of matter.

A test body M_b will see its mass depend on position:

$$\vec{a} = -\frac{\vec{\nabla}(M_b/M_P)}{M_b} = -\lambda_b \vec{\nabla} \varphi = -2\lambda_b \lambda_s \vec{\nabla} U = 2\lambda_b \lambda_s \vec{g}$$

Acceleration due to φ ! "Fifth force" $F_{\varphi}/F_{\text{Newton}} = 2\lambda_s \lambda_b$.

Bound on universal scalar coupling in Solar System: Cassini

 $\lambda^2 \le 5 \times 10^{-5}$

Varying couplings or mass ratios \Rightarrow *non-universal couplings* λ_b ! WEP: objects of *different composition* free-fall the same way Test bodies M_b , M_c

$$\eta \equiv \frac{|a_b - a_c|}{|g|} = 2\lambda_s(\lambda_b - \lambda_c)$$

Bound $\eta = (0.3 \pm 1.8) \times 10^{-13}$

(Schlamminger et al. 2008)

bodies of Be, Ti composition, source is Earth

Forces from local variations & Eötvös

For light weakly coupled scalars $\delta \varphi(\vec{x})$ behaves like $U(\vec{x})$ near a lump of matter.

A test body M_b will see its mass depend on position:

$$\vec{a} = -\frac{\vec{\nabla}(M_b/M_P)}{M_b} = -\lambda_b \vec{\nabla} \varphi = -2\lambda_b \lambda_s \vec{\nabla} U = 2\lambda_b \lambda_s \vec{g}$$

Acceleration due to φ ! "Fifth force" $F_{\varphi}/F_{Newton} = 2\lambda_s \lambda_b$.

Bound on universal scalar coupling in Solar System: Cassini

$$\lambda^2 \le 5 \times 10^{-5}$$

Varying couplings or mass ratios \Rightarrow *non-universal couplings* λ_b ! WEP: objects of *different composition* free-fall the same way Test bodies M_b , M_c

$$\eta \equiv \frac{|a_b - a_c|}{|g|} = 2\lambda_s(\lambda_b - \lambda_c)$$

Bound $\eta = (0.3 \pm 1.8) \times 10^{-13}$

(Schlamminger et al. 2008)

bodies of Be, Ti composition, source is Earth

Fundamental parameters

We identified 6 dimensionless fundamental parameters G_k

- 1. $G_N (\times \Lambda_c^2)$
- **2**. α
- 3. $\langle \phi \rangle$ (/ Λ_c)
- 4. $m_e (\Lambda_c)$
- 5. $\delta_q \equiv m_d m_u (\Lambda_c)$ controls n p mass difference
- 6. $\hat{m} \equiv \frac{1}{2}(m_d + m_u)$ (/ Λ_c) controls m_{π} , nuclear forces

NB Λ_c is "QCD strong coupling scale"

Dependence of observables on G_k can be estimated

Correlated variations of G_k in unified models

Fundamental parameters

We identified 6 dimensionless fundamental parameters G_k

- 1. $G_N (\times \Lambda_c^2)$
- **2**. α
- 3. $\langle \phi \rangle$ (/ Λ_c)
- 4. $m_e (\Lambda_c)$
- 5. $\delta_q \equiv m_d m_u (\Lambda_c)$ controls n p mass difference
- 6. $\hat{m} \equiv \frac{1}{2}(m_d + m_u)$ (/ Λ_c) controls m_{π} , nuclear forces

NB Λ_c is "QCD strong coupling scale"

Dependence of observables on G_k can be estimated

Correlated variations of G_k in unified models

Fundamental coupling functions

Proportionality assumption:

$$\Delta \ln G_k = d_k \times l(\vec{x}, t) \qquad \simeq d_k \beta_X (\varphi(\vec{x}, t) - \varphi_0)$$

 $\beta_X \Rightarrow \mbox{coupling of unified model to } \varphi$

$$\frac{d\ln G_k}{d\varphi} \equiv \beta_k = d_k \beta_X$$

Proportionality factors d_k define a "scenario" of variation

Test body couplings $\lambda_b \propto \beta_X$ thus:

$$\eta = 2C[d_k]\beta_X^2 = C'[d_k] \left(\frac{\dot{\alpha}}{\alpha}\right)^2 \dot{\varphi}^{-2}$$

Fundamental coupling functions

Proportionality assumption:

$$\Delta \ln G_k = d_k \times l(\vec{x}, t) \qquad \simeq d_k \beta_X (\varphi(\vec{x}, t) - \varphi_0)$$

 $\beta_X \Rightarrow \mbox{coupling of unified model to } \varphi$

$$\frac{d\ln G_k}{d\varphi} \equiv \beta_k = d_k \beta_X$$

Proportionality factors d_k define a "scenario" of variation

Test body couplings $\lambda_b \propto \beta_X$ thus:

$$\eta = 2C[d_k]\beta_X^2 = C'[d_k] \left(\frac{\dot{\alpha}}{\alpha}\right)^2 \dot{\varphi}^{-2}$$

Scalar mass and kinetic energy

EOM for (homogeneous) scalar

$$\ddot{\varphi} + 3H\dot{\varphi} = -V_{\text{eff}}'(\varphi, \rho_m)$$

If $V(\varphi)$ includes mass term $-m^2\Phi^2$ then obtain damped oscillation, $\omega \simeq m/2\pi$ For nontrivial cosmological drift require $m \lesssim H$: very long range

Bound on $\dot{\varphi}$ from kinetic energy (Dvali & Zaldarriaga 2001)

$$T = \frac{1}{2}\dot{\varphi}^2, \qquad V = V(\varphi)$$

thus

$$\frac{\dot{\varphi}}{H} \simeq \sqrt{3\Omega_{\varphi}(1+w_{\varphi})}$$

Expansion history of Universe bounds Ω , w above: estimate

$$\dot{\varphi} \leq \dot{\varphi}_{\max} \simeq 3.5 \times 10^{-11} \, y^{-1}$$

Bounds on η set limits on λ and on present-day / recent variations!

Scalar mass and kinetic energy

EOM for (homogeneous) scalar

$$\ddot{\varphi} + 3H\dot{\varphi} = -V_{\text{eff}}'(\varphi, \rho_m)$$

If $V(\varphi)$ includes mass term $-m^2\Phi^2$ then obtain damped oscillation, $\omega \simeq m/2\pi$ For nontrivial cosmological drift require $m \lesssim H$: very long range

Bound on $\dot{\varphi}$ from kinetic energy (Dvali & Zaldarriaga 2001)

$$T = \frac{1}{2}\dot{\varphi}^2, \qquad V = V(\varphi)$$

thus

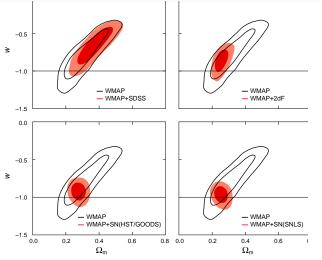
$$\frac{\dot{\varphi}}{H} \simeq \sqrt{3\Omega_{\varphi}(1+w_{\varphi})}$$

Expansion history of Universe bounds Ω , w above: estimate

$$\dot{\varphi} \leq \dot{\varphi}_{\rm max} \simeq 3.5 \times 10^{-11} \, y^{-1}$$

Bounds on η set limits on λ and on present-day / recent variations!

Bound on φ energy density and EOS



Spergel et al. 2006

Bounds on recent variation

$$\left. \frac{\dot{\alpha}}{10^{-15}\,\mathrm{y}^{-1}} \right| = \left| \frac{\Omega_{\varphi}(1+w_{\varphi})}{F[d_k]} \right|^{1/2} \left(\frac{\eta}{3.8 \times 10^{-12}} \right)^{1/2}$$

F is "unification factor": relation between $\alpha\text{-}$ and mass-variations

Scenario	α only	2	3	4	5, $\tilde{\gamma} = 42$	6, $\tilde{\gamma} = 70$	6, $\tilde{\gamma} = 25$
F (Be-Ti)	-9.310^{-5}	95	-9000	-165	-25	-26	41

Bounds come from gravitational effects alone!

		Error on $d \ln X/dt \ (10^{-15} y^{-1})$							
Scenario	X	Al/Hg	Clocks (μ)	Oklo	$^{187}\mathrm{Re}$	WEP			
α only	α	0.023	-	0.033	0.32	6.2			
2	α_X	0.027	0.074	0.12	0.015	0.007			
2S	α_X	0.044	0.12	0.19	0.026	0.012			
3	$\langle \phi \rangle / M_X$	12.4	2.6	54	0.53	0.33			
4	$\langle \phi \rangle / M_X$	1.78	6.2	7.7	1.2	0.35			
5, $\tilde{\gamma} = 42$	α_X	0.024	0.42	0.11	0.069	0.013			
$6, \tilde{\gamma} = 70$	α_X	0.016	0.30	0.070	0.049	0.008			
$6, \tilde{\gamma} = 25$	α_X	0.027	0.25	0.12	0.056	0.011			

Nonzero variation rules out w = -1

If there is a non-zero present time variation the scalar must have kinetic energy

$$\Omega_{\varphi}(1+w_{\varphi}) \geq 3.8 \times 10^{18} F\left(\frac{\dot{\alpha}/\alpha}{\mathrm{y}^{-1}}\right)^2 \eta_{\mathrm{max}}^{-1}$$

 η_{\max} is experimental limit

Disproof of pure Λ as "dark energy"

Conclusions and other directions

- * Need to know if a slow cosmological time variation of α exists
- * Need many probes: different z, different environments
- * Purely gravitational effects bound (recent) variations
- \ast Atomic clocks could put bounds on w with nonzero variation

Variation could be due to *environment-dependent* variation (Olive / Pospelov) probe with entirely different methods – clocks in vacuum chambers ... "Chameleons" / local variation models modify *short distance* gravity

Conclusions and other directions

- * Need to know if a slow cosmological time variation of α exists
- * Need many probes: different z, different environments
- * Purely gravitational effects bound (recent) variations
- \ast Atomic clocks could put bounds on w with nonzero variation

Variation could be due to *environment-dependent* variation (Olive / Pospelov) probe with entirely different methods – clocks in vacuum chambers . . .

"Chameleons" / local variation models modify short distance gravity