Dark Metric in the Non-Linear Palatini Formalism

L'Univers Invisible

Paris, Palais de l'UNESCO, 29 June - 3 July 2009

Salvatore Capozziello, Mauro Francaviglia, Silvio Mercadante

Torino, 1987

Wrocław, 2007

Torino, 2008

Question 1: Well... really should we?

Question 1: Well... really should we?
Question 2: Was Einstein right
in making this assumption?

Question 1: Well... really should we?
Question 2: Was Einstein right
in making this assumption?

Our answer to both questions is: *probably not!*

either:

1) we do not yet understand well the matter content of the Universe (practically 95% of the estimated matter is "dark" and yet invisible if not indirectly);

or:

2) we do not yet understand well the gravitational aspects of our Universe (there is no theoretical evidence that Gravity is obliged to obey Einstein Equations)

either:

1) we do not yet understand well the matter content of the Universe (practically 95% of the estimated matter is "dark" and yet invisible if not indirectly);

or:

2) we do not yet understand well the gravitational aspects of our Universe (there is no theoretical evidence that Gravity is obliged to obey Einstein Equations);

but most probably:

3) we do not understand both aspects....!

either:

1) we do not yet understand well the matter content of the Universe (practically 95% of the estimated matter is "dark" and yet invisible if not indirectly);

or:

2) we do not yet understand well the gravitational aspects of our Universe (there is no theoretical evidence that Gravity is obliged to obey Einstein Equations);

but most probably:

3) we do not understand both aspects....!
Is Gravity a low-energy limit of String theory...?
Does it exist a coherent scheme for the quantization of Gravity....?

either:

1) we do not yet understand well the matter content of the Universe (to solve the issue and leave Einstein Equations unchanged in their gravitational part several kinds of "exhotic" matter are introduced);

or:

2) we do not yet understand well the gravitational aspects of our Universe (Einstein Equations follow from Hilbert Lagrangian, that is linear in curvature but rather singular from the Hamiltonian viewpoint);

but most probably:

3) we do not understand both aspects....!
Is Gravity a low-energy limit of String theory...?
Does it exist a coherent scheme for the quantization of Gravity....?

either:

1) we do not yet understand well the matter content of the Universe (to solve the issue and leave Einstein Equations unchanged in their gravitational part several kinds of "exhotic" matter are introduced - some is unphysical);

or:

2) we do not yet understand well the gravitational aspects of our Universe (low-energy limit of string theory and quantization schemes entail that the Hilbert Lagrangian should be corrected by non-linear terms);

but most probaly:

3) we do not understand both aspects....!
Is Gravity a low-energy limit of String theory...?
Does it exist a coherent scheme for the quantization of Gravity....?

either:

1) we do not yet understand well the matter content of the Universe (to solve the issue and leave Einstein Equations unchanged in their gravitational part several kinds of "exhotic" matter are introduced - some is unphysical);

or:

2) we do not yet understand well the gravitational aspects of our Universe (low-energy limit of string theory and quantization schemes entail that the Hilbert Lagrangian should be corrected by non-linear terms);

because of this we argue that:

3) to better understand both aspects one should renounce to use Einstein Equations "rigidly" and allow a broader framework for gravity

either:

1) we do not yet understand well the matter content of the Universe (to solve the issue and leave Einstein Equations unchanged in their gravitational part several kinds of "exhotic" matter are introduced - some is unphysical);

or:

2) we do not yet understand well the gravitational aspects of our Universe (low-energy limit of string theory and quantization schemes entail that the Hilbert Lagrangian should be corrected by non-linear terms);

An idea that is currently under investigation in this precise direction is:

3) first allow that the action is non-linear in curvature

either:

1) we do not yet understand well the matter content of the Universe (to solve the issue and leave Einstein Equations unchanged in their gravitational part several kinds of "exhotic" matter are introduced - some is unphysical);

or:

2) we do not yet understand well the gravitational aspects of our Universe (low-energy limit of string theory and quantization schemes entail that the Hilbert Lagrangian should be corrected by non-linear terms);

An idea that is currently under investigation in this precise direction is:

3) first allow that the action is non-linear in curvature; ... but unfortunately field equations turn to be of fourth order....!

either:

1) we do not yet understand well the matter content of the Universe (to solve the issue and leave Einstein Equations unchanged in their gravitational part several kinds of "exhotic" matter are introduced - some is unphysical);

or:

2) we do not yet understand well the gravitational aspects of our Universe (low-energy limit of string theory and quantization schemes entail that the Hilbert Lagrangian should be corrected by non-linear terms);

- 3) first allow that the action is non-linear in curvature;
- 4) allow a framework "à la Palatini"

either:

1) we do not yet understand well the matter content of the Universe (to solve the issue and leave Einstein Equations unchanged in their gravitational part several kinds of "exhotic" matter are introduced - some is unphysical);

or:

2) we do not yet understand well the gravitational aspects of our Universe (low-energy limit of string theory and quantization schemes entail that the Hilbert Lagrangian should be corrected by non-linear terms);

- 3) first allow that the action is non-linear in curvature;
- 4) allow a framework "à la Palatini"
- ... at least to still have a set of second order field equations

either:

1) we do not yet understand well the matter content of the Universe (to solve the issue and leave Einstein Equations unchanged in their gravitational part several kinds of "exhotic" matter are introduced - some is unphysical);

or:

2) we do not yet understand well the gravitational aspects of our Universe (low-energy limit of string theory and quantization schemes entail that the Hilbert Lagrangian should be corrected by non-linear terms);

- 3) first allow that the action is non-linear in curvature;
- 4) allow a framework "à la Palatini"
- ... but also to separate metric effects (measurements) from gravitational effects (free fall)

either:

1) we do not yet understand well the matter content of the Universe (to solve the issue and leave Einstein Equations unchanged in their gravitational part several kinds of "exhotic" matter are introduced - some is unphysical);

or:

2) we do not yet understand well the gravitational aspects of our Universe (low-energy limit of string theory and quantization schemes entail that the Hilbert Lagrangian should be corrected by non-linear terms);

- 3) first allow that the action is non-linear in curvature;
- 4) allow a framework "à la Palatini";
- 5) avoid any kind of primordial prejudice against the need of revisiting Einstein Theory in both its mathematical and physical structure

In so-called "Palatini" (or "first-order") approach to Gravity, one assumes that the properties of the gravitational field are mediated by two independent fields:

1) a **metric** g (of Lorentzian signature) - the metric is necessary to to set up the geometric structure of SpaceTime, to allow **measurements** (rods & clocks, volume \sqrt{g} ds) as well as to define **causality**

In so-called "Palatini" (or "first-order") approach to Gravity, one assumes that the properties of the gravitational field are mediated by two independent fields:

1) a **metric** g (of Lorentzian signature) - the metric is necessary to to set up the geometric structure of SpaceTime, to allow **measurements** (rods & clocks, volume \sqrt{g} ds) as well as to define **causality**;

2) a **linear (torsionless) connection** Γ - the connection is necessary to define the gravitational field as something that is locally indistinguishable from inertial effects (**principle of equivalence**) as well as to define **free-fall**

In so-called "Palatini" (or "first-order") approach to Gravity, one assumes that the properties of the gravitational field are mediated by two independent fields:

1) a **metric** g (of Lorentzian signature) - the metric is necessary to to set up the geometric structure of SpaceTime, to allow **measurements** (rods & clocks, volume \sqrt{g} ds) as well as to define **causality**;

2) a linear (torsionless) connection Γ - the connection is necessary to define the gravitational field as something that is locally indistinguishable from inertial effects (**principle of equivalence**) as well as to define **free-fall**;

In so-called "Palatini" (or "first-order") approach to Gravity, one assumes that the properties of the gravitational field are mediated by two independent fields (g and Γ). Then one has to choose a Lagrangian for the theory.

1) a **metric** g (of Lorentzian signature) - the metric is necessary to to set up the geometric structure of SpaceTime, to allow **measurements** (rods & clocks, volume \sqrt{g} ds) as well as to define **causality**;

2) a linear (torsionless) connection Γ - the connection is necessary to define the gravitational field as something that is locally indistinguishable from inertial effects (**principle of equivalence**) as well as to define **free-fall**;

In so-called "Palatini" (or "first-order") approach to Gravity, one assumes that the properties of the gravitational field are mediated by two independent fields (g and Γ). Then one has to choose a Lagrangian for the theory.

1) a **metric** g (of Lorentzian signature) - the metric is necessary to to set up the geometric structure of SpaceTime, to allow **measurements** (rods & clocks, volume \sqrt{g} ds) as well as to define **causality**;

g defines the volume element of SpaceTime and all measure instruments

2) a **linear (torsionless) connection** Γ - the connection is necessary to define the gravitational field as something that is locally indistinguishable from inertial effects (**principle of equivalence**) as well as to define **free-fall**;

In so-called "Palatini" (or "first-order") approach to Gravity, one assumes that the properties of the gravitational field are mediated by two independent fields (g and Γ). Then one has to choose a Lagrangian for the theory.

1) a **metric** g (of Lorentzian signature) - the metric is necessary to to set up the geometric structure of SpaceTime, to allow **measurements** (rods & clocks, volume \sqrt{g} ds) as well as to define **causality**;

g defines the volume element of SpaceTime and all measure instruments

2) a linear (torsionless) connection Γ - the connection is necessary to define the gravitational field as something that is locally indistinguishable from inertial effects (**principle of equivalence**) as well as to define **free-fall**;

Γ defines the **curvature** of SpaceTime (**free-fall**) through its Riemann and Ricci tensors

$$\Gamma \Rightarrow R^{\lambda}_{\mu\nu\sigma}(\Gamma) \Rightarrow R_{\mu\nu} = R_{\mu\nu}(\Gamma)$$

$$\Gamma \Rightarrow R^{\lambda}_{\mu\nu\sigma}(\Gamma) \Rightarrow R_{\mu\nu} = R_{\mu\nu}(\Gamma)$$

The simplest choice (in the sense of the nearest choice to Einstein "standard" formalism) is to assume that **the Lagrangian depends only on the "scalar" curvature**.

$$\Gamma \Rightarrow R^{\lambda}_{\mu\nu\sigma}(\Gamma) \Rightarrow R_{\mu\nu} = R_{\mu\nu}(\Gamma)$$

The simplest choice (in the sense of the nearest choice to Einstein "standard" formalism) is to assume that **the Lagrangian depends only on the "scalar" curvature**.

 Γ by itself has no "scalar" curvature; it can only be defined by using the metric g as an instrument to measure curvature, by setting:

$$(\Gamma,g) \Rightarrow R = R(\Gamma,g) = g^{\mu\nu}R_{\mu\nu}(\Gamma)$$

$$\Gamma \Rightarrow R^{\lambda}_{\mu\nu\sigma}(\Gamma) \Rightarrow R_{\mu\nu} = R_{\mu\nu}(\Gamma)$$

The simplest choice (in the sense of the nearest choice to Einstein "standard" formalism) is to assume that **the Lagrangian depends only on the "scalar" curvature**.

 Γ by itself has no "scalar" curvature; it can only be defined by using the metric g as an instrument to measure curvature, by setting:

$$(\Gamma,g) \Rightarrow R = R(\Gamma,g) = g^{\mu\nu}R_{\mu\nu}(\Gamma)$$

Again the simplest choice is to assume that the gravitational part of the Lagrangian is a non-linear arbitrary function of the "scalar" curvature,

$$L_{grav} = f(R) = f(R(\Gamma,g))$$

$$\Gamma \Rightarrow R^{\lambda}_{\mu\nu\sigma}(\Gamma) \Rightarrow R_{\mu\nu} = R_{\mu\nu}(\Gamma)$$

The simplest choice (in the sense of the nearest choice to Einstein "standard" formalism) is to assume that **the Lagrangian depends only on the "scalar" curvature**.

 Γ by itself has no "scalar" curvature; it can only be defined by using the metric g as an instrument to measure curvature, by setting:

$$(\Gamma,g) \Rightarrow R = R(\Gamma,g) = g^{\mu\nu}R_{\mu\nu}(\Gamma)$$

Again the simplest choice is to assume that the gravitational part of the Lagrangian is a non-linear arbitrary function of the "scalar" curvature, while the full action contains also a (minimally coupled) matter Lagrangian:

$$L_{\text{tot}} = L_{\text{grav}} + L_{\text{mat}} = f(R) + L_{\text{mat}}(g, \partial g, \phi, \nabla^g \phi)$$

$$L_{tot} = L_{grav} + L_{mat} = f(R) + L_{mat}(g, \partial g, \phi, \nabla^g \phi)$$

we have two gravitational field equations, one for g (obtained by $\delta/\delta g$) and one for Γ (obtained by $\delta/\delta\Gamma$), both of order two - besides the specific field equation for matter that follows from varying with respect to ϕ .

$$L_{tot} = L_{grav} + L_{mat} = f(R) + L_{mat}(g, \partial g, \phi, \nabla^g \phi)$$

we have two gravitational field equations, one for g (obtained by $\delta/\delta g$) and one for Γ (obtained by $\delta/\delta\Gamma$), both of order two - besides the specific field equation for matter that follows from varying with respect to ϕ .

These two "gravitational" equations are (in dim=4):

$$f'(R)R_{\mu\nu} - 1/2 f(R)g_{\mu\nu} = T_{\mu\nu}$$

$$\nabla^{\Gamma}_{\lambda} (f'(R) \sqrt{g} g^{\mu\nu}) = 0$$

$$L_{\text{tot}} = L_{\text{grav}} + L_{\text{mat}} = f(R) + L_{\text{mat}}(g, \partial g, \phi, \nabla^g \phi)$$

we have two gravitational field equations, one for g (obtained by $\delta/\delta g$) and one for Γ (obtained by $\delta/\delta\Gamma$), both of order two - besides the specific field equation for matter that follows from varying with respect to ϕ .

These two "gravitational" equations are (in dim=4):

$$f'(R)R_{\mu\nu} - 1/2 f(R)g_{\mu\nu} = T_{\mu\nu}$$

$$\nabla^{\Gamma}_{\lambda} (f'(R)\sqrt{g} g^{\mu\nu}) = 0$$

The trace of the first dynamical equation $(\delta/\delta g)$ gives the **master equation**:

$$f'(R)R - 2f(R) = \tau$$

$$\tau = g^{\mu\nu} T_{\mu\nu}$$

$$L_{\text{tot}} = L_{\text{grav}} + L_{\text{mat}} = f(R) + L_{\text{mat}}(g, \partial g, \phi, \nabla^g \phi)$$

we have two gravitational field equations, one for g (obtained by $\delta/\delta g$) and one for Γ (obtained by $\delta/\delta\Gamma$), both of order two - besides the specific field equation for matter that follows from varying with respect to ϕ .

These two "gravitational" equations are (in dim=4):

$$f'(R)R_{\mu\nu} - 1/2 f(R)g_{\mu\nu} = T_{\mu\nu}$$

$$\nabla^{\Gamma}_{\lambda} (f'(R)\sqrt{g} g^{\mu\nu}) = 0$$

The **master equation** ensures in turn that the scalar curvature $R(g,\Gamma)$ can be expressed - via its analytic inversion (implicit function theory) - as a function of the trace τ of the energy-momentum tensor of ordinary matter:

$$R = R(\tau)$$

$$L_{\text{tot}} = L_{\text{grav}} + L_{\text{mat}} = f(R) + L_{\text{mat}}(g, \partial g, \phi, \nabla^g \phi)$$

we have two gravitational field equations, one for g (obtained by $\delta/\delta g$) and one for Γ (obtained by $\delta/\delta\Gamma$), both of order two - besides the specific field equation for matter that follows from varying with respect to ϕ .

These two "gravitational" equations are (in dim=4):

$$f'(R)R_{\mu\nu} - 1/2 f(R)g_{\mu\nu} = T_{\mu\nu}$$

$$\nabla^{\Gamma}_{\lambda} (f'(R)\sqrt{g} g^{\mu\nu}) = 0$$

Inserting this back into f'(R) - i.e., the first derivative of f(R) with respect to R - gives finally the factor f'(R) as a function of τ :

$$f'(\tau) = f'(R(\tau))$$

$$L_{tot} = L_{grav} + L_{mat} = f(R) + L_{mat}(g, \partial g, \phi, \nabla^g \phi)$$

we have two gravitational field equations, one for g (obtained by $\delta/\delta g$) and one for Γ (obtained by $\delta/\delta\Gamma$), both of order two - besides the specific field equation for matter that follows from varying with respect to ϕ .

These two "gravitational" equations are (in dim=4):

$$f'(R)R_{\mu\nu} - 1/2 f(R)g_{\mu\nu} = T_{\mu\nu}$$

$$\nabla^{\Gamma}_{\lambda} (f'(R)\sqrt{g} g^{\mu\nu}) = 0$$

Inserting this into the other field equation (obtained by $\delta/\delta\Gamma$), field equations imply that Γ is the Levi-Civita connection of a new metric h related to g by the conformal transformation

$$h^{\mu\nu} = f'(R)g^{\mu\nu}$$

$$L_{\text{tot}} = L_{\text{grav}} + L_{\text{mat}} = f(R) + L_{\text{mat}}(g, \partial g, \phi, \nabla^g \phi)$$

we have two gravitational field equations, one for g (obtained by $\delta/\delta g$) and one for Γ (obtained by $\delta/\delta\Gamma$), both of order two - besides the specific field equation for matter that follows from varying with respect to ϕ .

These two "gravitational" equations are (in dim=4):

$$f'(R)R_{\mu\nu} - 1/2 f(R)g_{\mu\nu} = T_{\mu\nu}$$

$$\nabla^{\Gamma}_{\lambda} (f'(R)\sqrt{g} g^{\mu\nu}) = 0$$

The second field equation (obtained by $\delta/\delta\Gamma$), in fact, under the conformal transformation $h^{\mu\nu} = f'(R)g^{\mu\nu}$ is turned into the following:

$$\nabla \Gamma_{\lambda} (\sqrt{h} h^{\mu\nu}) = 0$$

$$L_{tot} = L_{grav} + L_{mat} = f(R) + L_{mat}(g, \partial g, \phi, \nabla^g \phi)$$

we have two gravitational field equations, one for g (obtained by $\delta/\delta g$) and one for Γ (obtained by $\delta/\delta\Gamma$), both of order two - besides the specific field equation for matter that follows from varying with respect to ϕ .

These two "gravitational" equations are (in dim=4):

$$f'(R)R_{\mu\nu} - 1/2 f(R)g_{\mu\nu} = T_{\mu\nu}$$

$$\nabla^{\Gamma}_{\lambda} (f'(R)\sqrt{g} g^{\mu\nu}) = 0$$

and by a well known result of Differential Geometry (Levi-Civita Theorem) this in turn entails for a torsionless Γ :

$$\Gamma = \Gamma_{LC}(h)$$

$$L_{tot} = L_{grav} + L_{mat} = f(R) + L_{mat}(g, \partial g, \phi, \nabla^g \phi)$$

$$L_{tot} = L_{grav} + L_{mat} = f(R) + L_{mat}(g, \partial g, \phi, \nabla^g \phi)$$

then the following conclusions can be drawn:

1) the main dynamical field (gravitational field) is Γ , while the metric g is at the beginning a field with "induced dynamics"

$$L_{tot} = L_{grav} + L_{mat} = f(R) + L_{mat}(g, \partial g, \phi, \nabla^g \phi)$$

- 1) the main dynamical field (gravitational field) is Γ , while the metric g is at the beginning a field with "induced dynamics";
- 2) field equations tell us that the connection Γ is a posteriori a metric connection, the new metric h being conformally related with the original g by a factor that depends on the choice of the function f and on matter

$$L_{tot} = L_{grav} + L_{mat} = f(R) + L_{mat}(g, \partial g, \phi, \nabla^g \phi)$$

- 1) the main dynamical field (gravitational field) is Γ , while the metric g is at the beginning a field with "induced dynamics";
- 2) field equations tell us that the connection Γ is a posteriori a metric connection, the new metric h being conformally related with the original g by a factor that depends on the choice of the function f and on matter;
- 3) this new metric is the "gravitational metric" (also "dark metric") it tells how matter falls under the gravitational field Γ and deforms locally, point by point, the true metric g that we use to set up measures;

$$L_{tot} = L_{grav} + L_{mat} = f(R) + L_{mat}(g, \partial g, \phi, \nabla^g \phi)$$

- 1) the main dynamical field (gravitational field) is Γ , while the metric g is at the beginning a field with "induced dynamics";
- 2) field equations tell us that the connection Γ is a posteriori a metric connection, the new metric h being conformally related with the original g by a factor that depends on the choice of the function f and on matter;
- 3) this new metric is the "gravitational metric" (also "dark metric") it tells how matter falls under the gravitational field Γ and deforms locally, point by point, the true metric g that we use to set up measures;
- 4) this metric deformation changes forces

$$L_{tot} = L_{grav} + L_{mat} = f(R) + L_{mat}(g, \partial g, \phi, \nabla^g \phi)$$

- 1) the main dynamical field (gravitational field) is Γ , while the metric g is at the beginning a field with "induced dynamics";
- 2) field equations tell us that the connection Γ is a posteriori a metric connection, the new metric h being conformally related with the original g by a factor that depends on the choice of the function f and on matter;
- 3) this new metric is the "gravitational metric" (also "dark metric") it tells how matter falls under the gravitational field Γ and deforms locally, point by point, the true metric g that we use to set up measures;
- 4) this metric deformation changes forces and obliges us to see extra matter as an induced curvature effect (dark matter and dark energy)

$$L_{tot} = L_{grav} + L_{mat} = f(R) + L_{mat}(g, \partial g, \phi, \nabla^g \phi)$$

- 1) the main dynamical field (gravitational field) is Γ , while the metric g is at the beginning a field with "induced dynamics";
- 2) field equations tell us that the connection Γ is a posteriori a metric connection, the new metric h being conformally related with the original g by a factor that depends on the choice of the function f and on matter;
- 3) this new metric is the "gravitational metric" (also "dark metric") it tells how matter falls under the gravitational field Γ and deforms locally, point by point, the true metric g that we use to set up measures;
- 4) this metric deformation changes forces and obliges us to see extra matter as an induced curvature effect (dark matter and dark energy);
- 5) an additional term in the stress appears due to nonlinearity and Γ

$$L_{tot} = L_{grav} + L_{mat} = f(R) + L_{mat}(g, \partial g, \phi, \nabla^g \phi)$$

- 1) the main dynamical field (gravitational field) is Γ , while the metric g is at the beginning a field with "induced dynamics";
- 2) field equations tell us that the connection Γ is a posteriori a metric connection, the new metric h being conformally related with the original g by a factor that depends on the choice of the function f and on matter;
- 3) this new metric is the "gravitational metric" (also "dark metric") it tells how matter falls under the gravitational field Γ and deforms locally, point by point, the true metric g that we use to set up measures;
- 4) this metric deformation changes forces and obliges us to see extra matter as an induced curvature effect (dark matter and dark energy);
- 5) an additional term in the stress appears due to nonlinearity and Γ ;
- 6) if the energy-momentum tensor of matter is traceless (in particular zero) then this extra terms reduces to a cosmological constant

$$L_{tot} = L_{grav} + L_{mat} = f(R) + L_{mat}(g, \partial g, \phi, \nabla^g \phi)$$

- 1) the main dynamical field (gravitational field) is Γ , while the metric g is at the beginning a field with "induced dynamics";
- 2) field equations tell us that the connection Γ is a posteriori a metric connection, the new metric h being conformally related with the original g by a factor that depends on the choice of the function f and on matter;
- 3) this new metric is the "gravitational metric" (also "dark metric") it tells how matter falls under the gravitational field Γ and deforms locally, point by point, the true metric g that we use to set up measures;
- 4) this metric deformation changes forces and obliges us to see extra matter as an induced curvature effect (dark matter and dark energy);
- 5) an additional term in the stress appears due to nonlinearity and Γ ;
- 6) if the energy-momentum tensor of matter is traceless (in particular zero) then this extra terms reduces to a cosmological constant;
- 7) when (and only when) f(R) = R the theory reduces to Einstein gravity.

CONCLUSION: Is Dark Matter really "matter" or is it rather a (non-linear) effect of curvature.....?

What we have seen until now tells us that we do not understand Gravity at a full scale if we insist in pretending that: 1) the metric is the fundamental field; 2) the Lagrangian is linear in the curvature

Assuming non-linear functions of the curvature allows one to find "exotic effects" in Einstein Equations at different scales (Solar System, Galaxy, Extra Galactic, Cosmological) as curvature effects due to non-linearity of the Lagrangian rather that effects due to unseen matter or energy ("the dark side of the Universe").

Palatini approach - moreover - tell us why the metric we see generating Gravity is different, point by point, by the metric we use to make experiments. **Gravity drives the "gauge" of our instruments**. Clocks tick slower in a Gravitational field. Curvature tunes up Gravity and forces us to redefine rods and clocks....!

G. Magnano, M. Ferraris, M. Francaviglia

Nonlinear Gravitational Lagrangians
Journal of General Relativity and Gravitation 19 (5), 465-479 (1987)

M. Ferraris, M. Francaviglia, G. Magnano

Do Nonlinear Theories of Gravitation Really Exist? Classical and Quantum Gravity **5**, L95-L99 (1988)

M. Ferraris, M. Francaviglia, G. Magnano

Remarks on the Physical Metric in Non-Linear Theories of Gravitation Classical and Quantum Gravity 7, 261-263 (1990)

G. Magnano, M. Ferraris, M. Francaviglia

On the Legendre Transformation for a Class of Non-Regular Higher Order Lagrangian Field Theories Journal of Mathematical Physics **31** (2), 378-387 (1990)

G. Magnano, M. Ferraris, M. Francaviglia

Legendre Transformation and Dynamical Structure of Higher-Derivative Gravity Classical and Quantum Gravity 7, 557-570 (1990)

M. Ferraris, M. Francaviglia, I. Volovich

Universal Gravitational Equations Nuovo Cimento **B 108** (11), 1313-1317 (1993)

M. Ferraris, M. Francaviglia, I. Volovich

The Universality of Einstein Equations with Cosmological Constant Classical and Quantum Gravity **11**, 1505-1517 (1994)

A. Borowiec, M. Ferraris, M. Francaviglia, I. Volovich

Energy-Momentum Complex for Non-Linear Gravitational Lagrangians in the First-Order Formalism Journal of General Relativity and Gravitation **26** (7), 637-645 (1994)

M. Francaviglia

A New Action for Einstein Equations and Two-Dimensional Gravity in: "Proceedings of the Second International A.D. Sakharov Conference on Physics" - Moscow, 20-24 May 1996; I.M. Dremin, A.M. Semikhatov eds. (World Sci. Publ.; Singapore, 1997), pp. 248-253

M. Ferraris, M. Francaviglia, I. Volovich

A Model of Affine Gravity in Two Dimensions and Plurality of Topology Int. Journal of Modern Physics A **12** (28), 5067-5080 (1997)

M. Francaviglia

First Order Non-Linear Actions for General Relativity and 2-Dimensional Gravity in: "General Relativity and Gravitational Physics" (Proceedings XIIth Italian Conference, Roma 1996); M. Bassan et al. eds.; World Sci. (Singapore, 1997), pp. 173-180

A. Borowiec, M. Ferraris, M. Francaviglia, I. Volovich

Universality of Einstein Equations for the Ricci Squared Lagrangians Class. Quantum Gravity **15** (1), 43-55 (1998)

A. Borowiec, M. Francaviglia

Alternative Lagrangians for Einstein Metrics

in: "Current Topics in Mathematical Cosmology" (Proceedings of the International Seminar on Mathematical Cosmology, Potsdam March 30 - April 4, 1998); M. Rainer & H.-J. Schmidt eds., World Scientific (Singapore, 1999), pp. 361-368

A. Borowiec, M. Francaviglia, V.I. Smirichinski

Fourth-Order Ricci Gravity

in: "Group 23 - Proceedings of the XXIII Int. Colloq. on Group Theor. Methods in Physics, Dubna 2000", Vol. I; A. N. Sissakian, G. S Pogosyan & L. G. Mardoyan eds.; (Dubna, JINR; 2002), pp. 209-212

G. Allemandi, A. Borowiec, M. Francaviglia

Accelerated Cosmological Models in First-Order Nonlinear Gravity

Phys. Rev. D **70** (4), 043524 (2004)

- arXiv: hep-th/0403264

G. Allemandi, A. Borowiec, M. Francaviglia

Accelerated Cosmological Models in Ricci Squared Gravity Phys. Rev. D **70** (10), 103503 (2004)

-arXiv: hep-th/0407090

G. Allemandi, M. Francaviglia, M.L. Ruggiero, A. Tartaglia

Post-Newtonian Parameters from Alternative Theories of Gravity Journ. Gen. Rel. Grav. **37** (11), 1891-1904 (2005) -arXiv: gr-qc/0506123

G. Allemandi, A. Borowiec, M. Francaviglia, S. Odintsov

Dark Energy Dominance and Cosmic Acceleration in First Order Formalism Phys. Rev. D **72** (9) 063505 (2005)

G. Allemandi, M. Capone, S. Capozziello, M. Francaviglia

Conformal Aspects of the Palatini Approach in Extended Theories of Gravity Journal of General Relativity & Gravitation **38** (1), 33-60 (2006) -arXiv: hep-th/0409198

V. Cardone, S. Capozziello, M. Francaviglia

f(R) Theories of Gravity in Palatini Approach Matched with Observations Journal of General Relativity & Gravitation **38** (2), 1-24 (2006) - arXiv: Astro-ph/0410135

G. Allemandi, M. Francaviglia

The Variational Approach to Alternative Theories of Gravity

in: Proceedings of the 42nd Karpacz School of Theoretical Physics "Current Mathematical Topics in Gravitation and Cosmology", Ladek-Zdròj, 6-11 February 2006; G. Allemandi, A. Borowiec & M. Francaviglia eds.; special issue of Int. Journal of Geom. Meth. in Mod. Phys., **4** (1), xxx-xxx (2007)

A. Borowiec, L. Fatibene, M. Francaviglia, S. Mercadante

Covariant Lagrangian Formalism for Chern-Simons Theories

in: Proceedings of the 42nd Karpacz School of Theoretical Physics "Current Mathematical Topics in Gravitation and Cosmology", Ladek-Zdròj, 6-11 February 2006; G. Allemandi, A. Borowiec & M. Francaviglia eds.; special issue of Int. Journal of Geom. Meth. in Mod. Phys., **4** (2), 277-283 (2007)

G. Allemandi, M. Francaviglia

Dark Energy Models in Alternative Theories of Gravity

Mathematical Methods, Physical Models and Simulation Science and Technology, 1 (1), 278-290 (2007)

S. Capozziello, M.F. De Laurentis, M. Francaviglia

Higher-Order Gravity and the Cosmological Background of Gravitational Waves Astroparticle Physics **29**, 125-129 (2008)

S. Capozziello, M. Francaviglia

Extended Theories of Gravity and their Cosmological and Astrophysical Applications
Journal of General Relativity & Gravitation **40** (2-3), 357-420 (2008) - special issue on Dark Matter doi: 10.1007/s10174-007-0551-y

S. Capozziello, C. Corda, M.F. De Laurentis, M. Francaviglia

Massive Gravitational Waves from $R^{1+\varepsilon}$ Theory of Gravity and the Response of Interferometers (Journal of Cosmology and Astrophysics - in print, 2009)

S. Capozziello, M.F. Delaurentis, M. Francaviglia

Stochastic Background of Gravitational Waves as a Benchmark for Extended Theories of Gravity in: "The Problems of Modern Cosmology", a volume in honour of S.D. Odintsov in the Occasion of his 50th Birthday, Tomsk University (Tomsk, 2009), pp. 137-140

S. Capozziello, M. Francaviglia

Curvature Effects Towards Accelerated Expansion and Missing Matter (submitted – 2008)

S. Capozziello, M. Francaviglia, S. Mercadante

From Dark Energy & Dark Matter to Dark Metric (submitted to Foundations of Physics – 2008)