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General introduction
Basic facts:

ds2 = dt2 − a2(t)(dx2 + dy2 + dz2), (1)

a(t) - scale factor.
5 percent accuracy of no spatial curvature.
Gravity theory: Einstein.

Rµν − 1

2
gµνR = Tµν (2)

Tµν is stress-tensor of matter.
Typical choice: ideal fluid

p = wρ, (3)

p is pressure, ρ is energy density.
Two main cosmological parameters:
evolution of scale factor a(t),
evolution of EoS: w = w(t)?



Proposed Universe evolution

Big Bang / String inflationary era / Quantum Gravity - Unknown
Era.
Inflationary Universe:
almost de Sitter space:
ds2 = dt2 − a2(t)(dx2 + dy2 + dz2)
where a(t) = eHt .

Scenarios: most popular
Λl - cosmological constant,
or Scalar field,
or ideal fluid p = −ρ.
possibility of quintessence and (or) phantom inflation.

Problems
a) enough e-folding to reach observable volume
b) inflationary exit and transition to radiation-dominated stage
(preheating, etc.)



Intermediate Universe:
a(t) = tα, radiation / matter dominance.
Einstein theory describes it perfectly.

Late Universe: Dark energy era.
Almost de Sitter a(t) = eHt .

Scenarios:
ΛD - cosmological constant,
scalar fields,
ideal fluid: p = wρ, w ' −1 (up to 2 percent).
Possibility of phantom w < −1 or quintessence: −1 < w < −1

3 .
Oscillating Universe?



Possible future evolution

ΛCDM most probably continues to be ΛCDM epoch.

If p = f (ρ), where p is negative the following future singularity is
possible:

Type I. t → ts , a(t) →∞, ρ, |p| → ∞, a(t) ∼ 1
(t−ts

Type II. t → ts , a → as , ρ → ρs , |p| → ∞
Type III. t → ts , a(t) → as , ρ →∞, |p| → ∞,
Type IV. Only higher derivatives of H diverge.



I. Introduction

The modified gravity approach is extremely attractive in the
applications for late accelerating universe and dark energy. Indeed,
1. Modified gravity provides the very natural gravitational
alternative for dark energy. The cosmic speed-up is explained
simply by the fact of the universe expansion where some
sub-dominant terms (like 1/R) may become essential at small
curvature.
2. Modified gravity presents very natural unification of the
early-time inflation and late-time acceleration thanks to different
role of gravitational terms relevant at small and at large curvature.
Moreover, some models of modified gravity are predicted by
string/M-theory considerations.
3. It may serve as the basis for unified explanation of dark energy
and dark matter. Some cosmological effects (like galaxies rotation
curves) may be explained in frames of modified gravity.



4. Assuming that universe is entering the phantom phase, modified
gravity may naturally describe the transition from non-phantom
phase to phantom one without necessity to introduce the exotic
matter (like the scalar with wrong sign kinetic term or ideal fluid
with EoS parameter less than −1). In addition, often the phantom
phase in modified gravity is transient. Hence, no future Big Rip is
usually expected there.
5. Modified gravity quite naturally describes the transition from
decceleration to acceleration in the universe evolution.
6. The effective dark energy dominance may be assisted by the
modification of gravity. Hence, the coincidence problem is solved
there simply by the fact of the universe expansion.
7. Modified gravity is expected to be useful in high energy physics
(for instance, for the explanation of hierarchy problem or
unification of GUTs with gravity).
8. Despite quite stringent constraints from Solar System tests,
there are versions of modified gravity which may be viable theories
competing with General Relativity at current epoch.



I0. Class of viable modified f (R) gravities describing
inflation and the onset of accelerated expansion,
arXiv:0712.4017

Let us recall that, in general, the total action for the modified
gravitational models reads

S =
1

κ2

∫
d4x

√−g [R + f (R)] + S(m) . (4)

Here f (R) is a suitable function, which defines the modified
gravitational part of the model. The general equation of motion in
F (R) ≡ R + f (R) gravity with matter is given by

1

2
gµνF (R)−RµνF

′(R)−gµν¤F ′(R)+∇µ∇νF
′(R) = −κ2

2
T(m)µν ,

(5)
where T(m)µν is the matter energy-momentum tensor.



We investigate two classes of ‘viable’ modified gravitational models
what means, roughly speaking, they have to incorporate the
vanishing (or fast decrease) of the cosmological constant in the flat
(R → 0) limit, and must exhibit a suitable constant asymptotic
behavior for large values of R.
This simple model reads

f (R) = −2Λeff θ(R − R0) , (6)

where θ(R − R0) is Heaviside’s step distribution. Models in this
class are characterized by the existence of one or more transition
scalar curvatures, an example being R0 in the above toy model.



The other class of modified gravitational models that has been
considered contains a sort of ‘switching on’ of the cosmological
constant as a function of the scalar curvature R. A simplest
version of this kind reads

f (R) = 2Λeff(e−bR − 1) . (7)

Here the transition is smooth. The two above models may be
combined in a natural way, if one is also interested in the
phenomenological description of the inflationary epoch. For
example, a two-steps model may be the smooth version of

f (R) = −2Λ0 θ(R − R0) − 2ΛI θ(R − RI ) , (8)

with R0 << RI , the latter being the inflation scale curvature.



The typical, smooth behavior of f (R) associated with the one- and
two-step models is given, in the smooth case, in Figs. 1 and 2,
respectively.
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Figure: Typical behavior of f (R) in the one-step model).
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Figure: Typical behavior of f (R) in the two-step model.



Let us recall the two sufficient conditions which often lead to
realistic models

f (0) = 0 , lim
R→R1

f (R) = −α , (9)

where α is a suitable curvature scale which represents an effective
cosmological constant, being R1 >> R0, with R0 > 0, the
transition point. The condition f (0) = 0 ensures the disappearance
of the cosmological constant in the limit of flat space-time.
By using these conditions, some models in this class are seen to be
able to pass the local tests (with some extra bounds on the theory
parameters) and are also capable to explain the observed recent
acceleration of the universe expansion, provided that
α = Λ0 = 2H2

0 , H0 being the Hubble constant at the epoch of
reference. However, they do not incorporate early-time inflation,
which comes into play at higher value of R.



Thus, one might also reasonably require that

f (0) = 0 , lim
R→R2

f (R) = −(α + αI ) , (10)

where αI >> α is associated with the inflation cosmological
constant, ΛI , and where R2 >> RI >> R0, RI being the
corresponding transition large scalar curvature.
Further restrictions, like small corrections to Newton’s law and the
stability of planet-like gravitational solutions need to be fulfilled
too.



The starting point is the trace of the equations of motion, which is
trivial in the Einstein theory but gives precious dynamical
information in the modified gravitational models. It reads

3∇2f ′(R) = R + 2f (R)− Rf ′(R)− κ2T . (11)

The above trace equation can be interpreted as an equation of
motion for the non trivial ‘scalaron’ f ′(R) (since it is indeed
associated with the corresponding scalar field in the other frame).
For solutions with constant scalar curvature R∗, the scalaron field
is constant and one obtains the following vacuum solution:

R∗ + 2f (R∗)− R∗f ′(R∗) = 0 . (12)



Furthermore, we can describe the degree of freedom associated
with the scalaron by means of a scalar field χ, defined by
F ′(R) = 1 + f ′(R) = e−χ. If we consider a perturbation around
the vacuum solution of constant curvature R∗, given by
R = R∗ + δR, where

δR = −1 + f ′(R∗)
f ′′(R∗)

δχ , (13)

then the equation of motion for the scalaron field is

¤δχ− 1

3

(
1 + f ′(R∗)

f ′′(R∗)
− R∗

)
δχ = − κ2

6(1 + f ′(R∗)
T . (14)

As a result, in connection with the local and with the planetary
tests, the following effective mass plays a very crucial role:

M2 ≡ 1

3

(
1 + f ′(R∗)

f ′′(R∗)
− R∗

)
. (15)



If M2 < 0, a tachyon appears and this leads to an instability. Even
if M2 > 0, when M2 is small, it is δR 6= 0 at long ranges, which
generates a large correction to Newton’s law. As a result, M2 has
to be positive and very large in order to pass both the local and
the astronomical tests.
Concerning the matter instability this might occur when the
curvature is rather large, as on a planet, as compared with the
average curvature of the universe R ∼ (

10−33 eV
)2

. In order to
arrive to a stability condition, we can start by noting that the
scalaron equation can be rewritten in the form

¤R +
f ′′′(R)

f ′′(R)
∇ρR∇ρR +

(1 + f ′(R)R

3f ′′(R)
− 2(R + f (R))

3f ′′(R)
=

κ2

6f ′′(R)
T .

(16)



If we now consider a perturbation, δR, of the Einstein gravity
solution R = Re = −k2T

2 > 0, we obtain

0 ' (−∂2
t + U(Re))δR + C , (17)

with the effective potential

U(Re) ≡
(

F ′′′′(Re)

F ′′(Re)
− F ′′′(Re)

2

F ′′(Re)2

)
∇ρRe∇ρRe +

Re

3
−

−F ′(Re)F
′′′(Re)Re

3F ′′(Re)2
− F ′(Re)

3F ′′(Re)
+

+
2F (Re)F

′′′(Re)

3F ′′(Re)2
− F ′′′(Re)Re

3F ′′(Re)2
. (18)

If U(Re) is positive, then the perturbation δR becomes
exponentially large and the whole system becomes unstable. Thus,
the matter stability condition is, in this case,

U(Re) < 0 . (19)



We will here present some new viable f (R) models. We start with
a most simple one

f (R) = α(e−bR − 1) . (20)

Since f (0) = 0 and f (R) → −α for large R, conditions (9) are
satisfied. Moreover,

f ′(R) = −bαe−bR , f ′′(R) = b2αe−bR . (21)

We have seen that in the discussion of the viability of modified
gravitational models, the existence of vacuum constant curvature
solutions plays a very crucial role, namely the existence of solutions
of Eq. (12). With regard to the trivial fixed point R∗ = 0, this
model has the properties

1 + f ′(0) = 1− αb , f ′′(0) = αb2 . (22)

Thus, the effective mass for R∗ = 0 is

M2(0) =
1− αb

3αb2
, (23)

and then Minkowski space time is stable as soon as αb < 1. Such
condition is equivalent to 1 + f ′(0) > 0.



A simple modification of the above model which incorporates the
inflationary era, namely the requirement (10), is

f (R) = α(e−bR − 1)− αI
ebR − 1

ebR + ebRI
, (24)

or, as a two-step model,

f (R) = −α
ebR − 1

ebR + ebR0
− αI

ebR − 1

ebR + ebRI
. (25)

Again, f (0) = 0 and, at the value R = RI , there is a transition to a
higher constant value −(α + αI ) which can be related to inflation.
A possible modification of the previous model is the following:

f (R) = −α(e−bR − 1) + cRN ebR − 1

ebR + ebRI
, (26)

with N > 2 and c > 0. In this variant, during the inflationary era
at R > RI , f (R), the model acquires also a power dependence on
the scalar curvature, which may help to exit from the inflationary
stage.



For the sharp, theta models, besides the problem of antigravity, for
R0 << α and RI << αI , they posses, generically, two De Sitter
critical points, one around the transition point R∗ ' 5R0

4 and the
other being

R∗,2 ' 2α . (27)

We can also investigate the matter instability. For the two-step
model (25), we now assume

R0 ¿ R ∼ Re ¿ RI . (28)

Then f (R) in (25) can be approximated as

f (R) ∼ −α
{
−1 +

(
1 + e−bR0

)
e−b(R−R0)

}
− αIbR

1 + ebRI
. (29)



We may assume
αIb

1 + ebRI
¿ 1 , (30)

since bRI could be very large. Then we find

U(Re) ' − eb(Re−R0)

3αb2 (1 + e−bR0)
, (31)

which is negative and there is no instability.
As a model which is able to describe both the inflation and the late
acceleration epochs, we can consider the following two-step model:

f (R) = −α0

(
tanh

(
b0 (R − R0)

2

)
+ tanh

(
b0R0

2

))
−

−αI

(
tanh

(
bI (R − RI )

2

)
+ tanh

(
bIRI

2

))
. (32)



We now assume

RI À R0 , αI À α0 , bI ¿ b0 , (33)

and
bIRI À 1 . (34)

When R → 0 or R ¿ R0, RI , f (R) behaves as

f (R) → −

 α0b0

2 cosh2
(

b0R0
2

) +
αIbI

2 cosh2
(

bI RI
2

)

R . (35)

and find f (0) = 0 again. When R À RI , we find

f (R) → −2ΛI ≡
≡ −α0

(
1 + tanh

(
b0R0

2

))
− αI

(
1 + tanh

(
bIRI

2

))
∼

∼ −αI

(
1 + tanh

(
bIRI

2

))
. (36)



On the other hand, when R0 ¿ R ¿ RI , we find

f (R) → −α0

[
1 + tanh

(
b0R0

2

)]
− αIbIR

2 cosh2
(

bI RI
2

) ∼ −2Λ0 ≡

≡ −α0

[
1 + tanh

(
b0R0

2

)]
. (37)

Here we have assumed (34). We also find

f ′(R) = − α0b0

2 cosh2
(

b0(R−R0)
2

) − αIbI

2 cosh2
(

bI (R−RI )
2

) , (38)

which has two valleys when R ∼ R0 or R ∼ RI . When R = R0, we
obtain

f ′(R0) = −α0b0 − αIbI

2 cosh2
(

bI (R0−RI )
2

) > −αIbI − α0b0 . (39)



On the other hand, when R = RI , we get

f ′(RI ) = −αIbI − α0b0

2 cosh2
(

b0(R0−RI )
2

) > −αIbI − α0b0 . (40)

Then, in order to avoid the antigravity period, we find

αIbI + α0b0 < 2 . (41)

The existence of the de Sitter critical points in this two-step model
is much more difficult to investigate. However, in order to get the
acceleration of the Universe expansion it is sufficient that
ωeff < −1

3 .



We now investigate the correction to the Newton’s law and the
matter instability issue. In the solar system domain, on or inside
the earth, where R À R0, f (R) can be approximated by

f (R) ∼ −2Λeff + 2αe−b(R−R0) . (42)

On the other hand, since R0 ¿ R ¿ RI , by assuming Eq. (34),
f (R) in (32) could be also approximated by

f (R) ∼ −2Λ0 + 2αe−b0(R−R0) , (43)

which has the same expression, after having identified Λ0 = Λeff

and b0 = b. Then, we may check the case of (42) only.



We find that the effective mass has the following form

M2 ∼ eb(R−R0)

4αb2
, (44)

which could be very large again, as in the last section, and the
correction to Newton’s law can be made negligible. We also find
that U(Rb) in (18) has the form

U(Re) = − 1

2αb

(
2Λ +

1

b

)
e−b(Re−R0) , (45)

which could be negative, what would suppress any instability.
The perturbations story?



Ia. Modified non-local-F(R) gravity as the key for the
inflation and dark energy

The starting action of the non-local gravity is given by

S =

∫
d4x

√−g

{
1

2κ2
R

(
1 + f (¤−1R)

)
+ Lmatter

}
. (46)

Here f is some function and ¤ is the d’Almbertian for scalar field.
The above action can be rewritten by introducing two scalar fields
φ and ξ in the following form:

S =

∫
d4x

√−g

[
1

2κ2
{R (1 + f (φ)) + ξ (¤φ− R)}+ Lmatter

]

=

∫
d4x

√−g

[
1

2κ2
{R (1 + f (φ))− ∂µξ∂µφ− ξR}+ Lmatter

]
.(47)



Varying (47) with respect to the metric tensor gµν gives

0 =
1

2
gµν {R (1 + f (φ)− ξ)− ∂ρξ∂

ρφ} − Rµν (1 + f (φ)− ξ)

+
1

2
(∂µξ∂νφ + ∂µφ∂νξ)− (gµν¤−∇µ∇ν) (f (φ)− ξ) + κ2Tµν .(48)

On the other hand, the variation with respect to φ gives

0 = ¤ξ + f ′(φ)R . (49)

Now we assume the FRW metric

ds2 = −dt2 + a(t)2
∑

i=1,2,3

(
dx i

)2
, (50)

and the scalar fields φ and ξ only depend on time. Then Eq.(48)
has the following form:

0 = −3H2 (1 + f (φ)− ξ) +
1

2
ξ̇φ̇− 3H

(
f ′(φ)φ̇− ξ̇

)
+ κ2ρ , (51)

0 =
(
2Ḣ + 3H2

)
(1 + f (φ)− ξ) +

1

2
ξ̇φ̇ +

(
d2

dt2
+ 2H

d

dt

)
(f (φ)− ξ) + κ2p .(52)



On the other hand, scalar equations are:

0 = φ̈ + 3Hφ̇ + 6Ḣ + 12H2 , (53)

0 = ξ̈ + 3H ξ̇ −
(
6Ḣ + 12H2

)
f ′(φ) . (54)

We now assume deSitter solution H = H0, then Eq.(53) can be
solved as

φ = −4H0 − φ0e−3H0t + φ1 , (55)

with constants of integration, φ0 and φ1. For simplicity, we only
consider the case that φ0 = φ1 = 0. We also assume f (φ) is given
by

f (φ) = f0ebφ = f0e−4bH0φ . (56)

Then Eq.(54) can be solved as follows,

ξ = − 3f0
3− 4b

e−4bH0t +
ξ0

3H0
e−3H0t − ξ1 . (57)

Here ξ0 and ξ1 are constants. For the deSitter space a behaves as
a = a0eH0t . Then for the matter with constant equation of state
w , we find

ρ = ρ0e−3(w+1)H0t . (58)



Then by substiruting (55), (57), and (58) into (51), we obtain

0 = −3H2
0 (1 + ξ1) + 6H2

0 f0 (2b − 1) e−4H0bt + κ2ρ0e−3(w+1)H0t .
(59)

When ρ0 = 0, if we choose

b =
1

2
, ξ1 = −1 , (60)

deSitter space can be a solution. Even if ρ 6= 0, if we choose

b =
3

4
(1 + w) , f0 =

κ2ρ0

3H2
0 (1 + 3w)

, ξ1 = −1 , (61)

there is a deSitter solution.
In the presence of matter with w 6= 0, we may have a deSitter
solution H = H0 even if f (φ) given by

f (φ) = f0eφ/2 + f1e3(w+1)φ/4 . (62)



Then the following solution exists:

φ = −4H0t , ξ = 1+3f0e−2H0t+
f1
w

e−3(w+1)H0t , ρ = −3(3w + 1)H2
0 f1

κ2
e−3(1+w)H0t .

(63)
Note that H0 in (55) can be arbitrary and can be determined by an
initial condition. Since H0 can be small or large, the theory with
function NLdS2 with b = 1/2 could describe the early-time
inflation or current cosmic acceleration. Motivated by this, we may
propose the following model:

f (φ) =





f0eφ/2 0 > φ > φ1

f0eφ1/2 φ1 > φ > φ2

f0e(φ−φ2+φ1)/2 φ < φ2

. (64)

Here φ1 and φ2 are constants. We also assume that matter could
be neglected when 0 > φ > φ1 or φ < φ2. Since the above
function f (φ) is not smooth around φ = φ1 and φ2, one may
replace the above f (φ) with a more smooth function. When
0 > φ > φ1 or φ < φ2, the universe is described by the deSitter
solution although corresponding H0 might be different.



When φ1 > φ > φ2, since f (φ) is a constant, the universe is
described by the Einstein gravity, where effective gravitational
constant κeff is given by

1

κ2
eff

=
1

κ2

(
1 + f0eφ1/2

)
. (65)

Then due to the matter contribution there could occur matter
dominated phase. In this phase, the Hubble rate H behaves as
H = 2

3(t0+t) with a constant t0 and the scalar curvature is given by

R = 4
3(t0+t)2

. Now we assume that the universe started at t = 0

with a rather big but constant curvature R = RI = 12H2
I with a

constant HI , that is, the universe is in deSitter phase. Then in the
model (64), by following (55), φ behaves as φ = −4HI t.
Subsequently, at t = t1 ≡ −φ1/4HI , we have φ = φ1 and the
universe enters into the matter dominated phase. If the curvature
is continuous at t = t1, t0 can be found by solving

R =
4

3 (t0 + t1)
2

= 12H2
I . (66)



If φ and φ̇ are also continuous, when φ1 > φ > φ2, φ is given by
solving (53) as

φ = −4

3
ln

(
t

t1

)
−φ̃ (t − t1)+φ1 , φ̃ ≡ −4HI (t0 + t1)

2+
4

3
(t0 + t1) .

(67)
When φ = φ2, the deSitter phase, which corresponds to the
accelerating expansion of the present universe, could have started.
The solution corresponds to deSitter space (with some shifts of
parameters) and H0 = HL could be given by solving

12H2
L =

4

3 (t0 + t2)
2

. (68)

if the curvature is continuous at φ = φ2. In (68), t2 is defined by
φ(t2) = φ2. Thus, we got the cosmological FRW model with
inflation, radiation/matter dominated phase, and current
accelerating expansion.



Unification of the inflation with cosmic acceleration in the
non-local-F(R) gravity
The starting action is:

S =

∫
d4x

√−g

{
1

2κ2
R

(
1 + f (¤−1R)

)
+ F (R) + Lmatter

}
.

(69)
Here F (R) is some function of R. FRW equations look like

0 = −3H2 (1 + f (φ)− ξ) +
1

2
ξ̇φ̇− 3H

(
f ′(φ)φ̇− ξ̇

)

−F (R) + 6
(
H2 + Ḣ

)
F ′(R)− 36

(
4H2Ḣ + HḦ

)
F ′′(R) + κ2ρ ,(70)

0 =
(
2Ḣ + 3H2

)
(1 + f (φ)− ξ) +

1

2
ξ̇φ̇ +

(
d2

dt2
+ 2H

d

dt

)
(f (φ)− ξ)

F (R)− 2
(
Ḣ + 3H2

)
F ′(R) + κ2p . (71)

Here R = 12H2 + 6Ḣ.



We may propose several scenarios. One is that the inflation at the
early universe is generated mainly by F (R) part but the current
acceleration is defined mainly by f

(
¤−1R

)
part. One may consider

the inverse, that is, the inflation is generated by f
(
¤−1R

)
part

but the late-time acceleration by F (R).
For instance, for the first scenario one can take: F (R) = βR2.
Here β is a constant. We choose f (¤−1R) part as in (56) with
b = 1/2 but f0 is taken to be very small and φ starts with φ = 0.
Hence, at the early universe f

(
¤−1R

)
is very small and could be

neglected. Then due to the F (R)-term (71), there occurs (slightly
modified) R2-inflation. After the end of the inflation, there occurs
the radiation/matter dominance era. In this phase, φ behaves as in

(67): φ = −4
3 ln

(
t
t̂0

)
− φ̂1

(
t − t̂0

)
+ φ̂2. However, the constants

t̂0, φ̂1, and φ̂2 should be determined by the proper initial
conditions, which may differ from that in (67). We now assume φ̂1

is very small but negative. ¿From the expression of (56) it follows
f (φ) becomes large as time goes by and finally this term
dominates. As a result, deSitter expansion occurs at the present
universe.



II. The modified f (R) gravity
Let us start from the rather general 4-dimensional action:

S =

∫
d4x

√−g {f (R) + Lm} . (72)

Here R is the scalar curvature, f (R) is an arbitrary function and
Lm is a matter Lagrangian density. The equation of the motion is
given by

0 =
1

2
gµν f (R)− Rµν f

′(R)−∇µ∇ν f
′(R)− gµν∇2f ′(R) +

1

2
Tµν .

(73)
With no matter and for the Ricci tensor Rµν being covariantly
constant, the equation of motion corresponding to the action (72)
is:

0 = 2f (R)− Rf ′(R) , (74)

which is the algebraic equation with respect to R. If the solution
of Eq.(74) is positive, it expresses deSitter universe and if negative,
anti-deSitter universe.



In the following, the metric is assumed to be in the FRW form:

ds2 = −dt2 + â(t)2
3∑

i=1

(
dx i

)2
. (75)

Here we assume that the spatial part is flat as suggested by the
observation of the Cosmic Microwave Background (CMB)
radiation. Without the matter and in FRW background, Eq.(73)
gives

0 = −1

2
f (R)+3

(
H2 + Ḣ

)
f ′(R)−6

Ḣ

H
f ′′(R)−18H2 d

dt

(
Ḣ

H2

)
f ′′(R) .

(76)
Here R is given by R = 12H2 + 6Ḣ. Our main purpose is to look
for accelerating cosmological solutions of the following form: de
Sitter (dS) space, where H is constant and a(t) ∝ eHt ,
quintessence and phantom like cosmologies:

a =

{
a0t

h0 , when h0 > 0 (quintessence)

a0 (ts − t)h0 , when h0 < 0 (phantom)
. (77)



Introducing the auxiliary fields, A and B, one can rewrite the
action (72) as follows:

S =

∫
d4x

√−g

[
1

κ2
{B (R − A) + f (A)}+ Lmatter

]
. (78)

One is able to eliminate B, and to obtain

S =

∫
d4x

√−g
[ 1

κ2

{
f ′(A) (R − A) + f (A)

}
+ Lmatter

]
, (79)

and by using the conformal transformation gµν → eσgµν

(σ = − ln f ′(A)), the action (79) is rewritten as the Einstein-frame
action:

SE =

∫
d4x

√−g
[ 1

κ2

(
R − 3

2
gρσ∂ρσ∂σσ − V (σ)

)
+ Lσ

matter

]
.

(80)
Here,

V (σ) = eσG
(
e−σ

)− e2σf
(
G

(
e−σ

))
=

A

f ′(A)
− f (A)

f ′(A)2
. (81)



The action (79) is called the Jordan-frame action. In the
Einstein-frame action, the matter couples with the scalar field σ.
One may define the effective EoS parameter weff in Jordan frame as

weff =
p

ρ
= −1− 2Ḣ

3H2
, (82)

The scale factor in Einstein frame (when the two frames appear) is
denoted as a(t).



A. Modified gravity with negative and positive powers of
the curvature

As the first gravitational alternative for dark energy we consider
the following action

f (R) = R − c

(R − Λ1)
n + b (R − Λ2)

m . (83)

Here we assume the coefficients n, m, c , b > 0 but n, m may be
fractional.
For the action (83), Eq.(74) has the following form:

0 = −R +
(n + 2)c

(R − Λ1)
n + (m − 2)b (R − Λ2)

m . (84)

Especially when n = 1 and m = 2, one gets

R = R± =
Λ1 ±

√
Λ2

1 + 12c

2
. (85)



If c > 0, one solution corresponds to deSitter space and another to

anti-deSitter. If −Λ2
1

12 < c < 0 and Λ1 > 0, both of solutions express
the deSitter space. Hence, the natural possibility for the unification
of early-time inflation with late-time acceleration appears.
By assuming the FRW universe metric (75), one may define the
Hubble rate by H = ˙̂a/â. The contribution from matter may be
neglected. Especially when n = 1, m = 2, and Λ1 = Λ2 = 0 in (83)
and the curvature is small, we obtain
â ∝ t2. We now consider the more general case that f (R) is given
by (83) when the curvature is small. Neglecting the contribution

from the matter again, solving (73), we obtain â ∝ t
(n+1)(2n+1)

n+2 .



B. ln R gravity
Other gravitational alternatives for dark energy may be suggested
along the same line. As an extension of the theory of the previous
section, one may consider the model containing the logarithm of
the scalar curvature R:

f (R) = R + α′ ln
R

µ2
+ βRm . (86)

We should note that m = 2 choice simplifies the model.
We can consider late FRW cosmology when the scalar curvature R
is small. Solving (73), it follows that the power law inflation could

occur: â ∝ t
1
2 . Since ˙̂a > 0 but ¨̂a < 0, the deccelerated expansion

occurs.
One may discuss further generalizations

f (R) = R + γR−n

(
ln

R

µ2

)m

. (87)

Here n is rectricted by n > −1 (m is an arbitrary) in order that the
second term could be more dominant than the Einstein term when
R is small.



For this model, we find

â ∼ t
(n+1)(2n+1)

n+2 . (88)

This does not depend on m. The effective weff is given by

weff = − 6n2 + 7n − 1

3(n + 1)(2n + 1)
. (89)

Then weff can be negative if

− 1 < n < −1

2
or n >

−7 +
√

73

12
= 0.1287 · · · . (90)

From (88), the condition that the universe could accelerate is
(n+1)(2n+1)

n+2 > 1, that is:

n >
−1 +

√
3

2
= 0.366 · · · . (91)

Clearly, the effective EoS parameter w may be within the existing
bounds.



C. Modified gravity coupled with matter
The ideal fluid is taken as the matter with the constant w :
p = wρ. Then from the energy conservation law it follows
ρ = ρ0a

−3(1+w) . In a some limit, strong cuvature or weak one,
f (R) may behave as f (R) ∼ f0R

α, with constant f0 and α. An
exact solution of the equation of motion is found to be

a = a0t
h0 , h0 ≡ 2α

3(1 + w)
,

a0 ≡
[
−6f0h0

ρ0

(−6h0 + 12h2
0

)α−1 {(1− 2α) (1− α)− (2− α)h0}
]− 1

3(1+w)

.(92)

When α = 1, the result h0 = 2
3(1+w) in the Einstein gravity is

reproduced. The effective weff may be defined by h0 = 2
3(1+weff) .

By using (92), one finds the effective weff (82) is given by

weff = −1 +
1 + w

α
. (93)



Hence, if w is greater than −1 (effective quintessence or even
usual ideal fluid with positive w), when α is negative, we obtain
the effective phantom phase where weff is less than −1.
One may now take f (R) as

f (R) =
1

κ2

(
R − γR−n + ηR2

)
. (94)

When the cuvature is small, the second term becomes dominant
and one may identify f0 = − γ

κ2 and α = −n. Then from (93), it

follows weff = −1− 1+w
n . Hence, if n > 0, an effective phantom

era occurs even if w > −1.



D. The equivalence with scalar-tensor theory

It is very interesting that f (R) gravity is in some sense equivalent
to the scalar-tensor theory with the action:

S =

∫
d4x

√−g

{
1

2κ2
R − 1

2
ω(φ)∂µφ∂µφ− V (φ)

}
,

ω(φ) = − 2

κ2
h′(φ) , V (φ) =

1

κ2

(
3h(φ)2 + h′(φ)

)
. (95)

Here h(φ) is a proper function of the scalar field φ. Imagine the
following FRW cosmology is constructed:

φ = t , H = h(t) . (96)

Then any cosmology defined by H = h(t) in (96) can be realized
by (95).



Indeed, if one defines a new field ϕ as

ϕ =

∫
dφ

√
|ω(φ)| , (97)

the action (95) can be rewritten as

S =

∫
d4x

√−g

{
1

2κ2
R ∓ 1

2
∂µϕ∂µϕ− Ṽ (ϕ)

}
. (98)

In case the sign in front of the kinetic term of ϕ in (98) is −, we

can use the conformal transformation gµν → e±κϕ
√

2
3 gµν , and

make the kinetic term of ϕ vanish. Hence, one obtains

S =

∫
d4x

√−g





e±κϕ
√

2
3

2κ2
R − e±2κϕ

√
2
3 Ṽ (ϕ)



 . (99)

The action (99) may be called as Jordan frame action and the
action (98) as the Einstein frame action.



Since ϕ becomes the auxiliary field, one may delete ϕ by using an
equation of motion:

R = e±κϕ
√

2
3

(
4κ2Ṽ (ϕ)± 2κ

√
3

2
Ṽ ′(ϕ)

)
, (100)

which may be solved with respect to R as ϕ = ϕ(R). One can
rewrite the action (99) in the form of f (R) gravity :

S =

∫
d4x

√−gf (R) ,

f (R) ≡ e±κϕ(R)
√

2
3

2κ2
R − e±2κϕ(R)

√
2
3 Ṽ (ϕ(R)) . (101)



III. String-inspired Gauss-Bonnet gravity as dark energy

We consider a model of the scalar field φ coupled with gravity. As
a stringy correction, the term proportional to the GB invariant
G = R2 − 4RµνR

µν + RµνρσRµνρσ is added. The starting action is
given by

S =

∫
d4x

√−g

{
1

2κ2
R − γ

2
∂µφ∂µφ− V (φ) + f (φ)G

}
,

V = V0e
− 2φ

φ0 , f (φ) = f0e
2φ
φ0 . (102)

Here γ = ±1.



For the canonical scalar, γ = 1 but at least when GB term is not
included, the scalar behaves as phantom only when γ = −1.
Starting with FRW universe metric (82) in sect.37 and assuming
(77) in sect.37, the following solutions may be obtained

V0t
2
1 = − 1

κ2 (1 + h0)

{
3h2

0 (1− h0) +
γφ2

0κ
2 (1− 5h0)

2

}
,

48f0h
2
0

t2
1

= − 6

κ2 (1 + h0)

(
h0 − γφ2

0κ
2

2

)
. (103)

Even if γ = −1, there appear the solutions describing
non-phantom cosmology coresponding the quintessence or matter.



As an example, we consider the case that h0 = −80
3 < −1, which

gives weff = −1.025. Simple tuning gives other acceptable values
of the effective w in the range close to −1. This is consistent with
the observational bounds for effective w Then from (103), one
obtains

V0t
2
1 =

1

κ2

(
531200

231
+

403

154
γφ0κ

2

)
,

f0
t2
1

= − 1

κ2

(
9

49280
+

27

7884800
γφ0κ

2

)
. (104)

Therefore even starting from the canonical scalar theory with
positive potential, we may obtain a solution which reproduces the
observed value of w .
If φ and H are constants: φ = ϕ0, H = H0, this corresponds to
deSitter space. Then the solution of equations of motion gives:

H2
0 = −e−

2ϕ0
φ0

8f0κ2
. (105)

Therefore in order for the solution to exist, the condition is f0 < 0.
In (105), ϕ0 can be arbitrary.



IV. Modified gravity: non-linear coupling, cosmic
acceleration
A. Gravitational solution of coincidence problem

As an example of such theory, the following action is considered:

S =

∫
d4x

√−g

{
1

κ2
R +

(
R

µ2

)α

Ld

}
. (106)

Here Ld is matter-like action (dark energy). The choice of
parameter µ may keep away the unwanted instabilities which often
occur in higher derivative theories.
By the variation over gµν , the equation of motion follows:

0 =
1√−g

δS

δgµν
=

1

κ2

{
1

2
gµνR − Rµν

}
+ T̃µν . (107)



Here the effective EMT tensor T̃µν is defined by

T̃µν ≡ 1

µ2α

{−αRα−1RµνLd + α
(∇µ∇ν − gµν∇2

) (
Rα−1Ld

)
+ RαTµν

}
,

Tµν ≡ 1√−g

δ

δgµν

(∫
d4x

√−gLd

)
(108)

Let free massless scalar be a matter

Ld = −1

2
gµν∂µφ∂νφ . (109)

Then the equation given by the variation over φ has the following
form:

0 =
1√−g

δS

δφ
=

1√−g
∂µ

(
Rα√−ggµν∂νφ

)
. (110)



The metric again corresponds to FRW universe with flat 3-space.
If we assume φ only depends on t (φ = φ(t)), the solution of
scalar field equation (110) is given by

φ̇ = qa−3R−α . (111)

Here q is a constant of the integration. Hence RαLd = q2

2a6Rα ,
which becomes dominant when R is small (large) compared with
the Einstein term 1

κ2 R if α > −1 (α < −1). Thus, one arrives at
the remarkable possibility that dark energy grows to asymptotic
dominance over the usual matter with decrease of the curvature.
At current universe, this solves the coincidence problem (the
equality of the energy density for dark energy and for matter)
simply by the fact of the universe expansion.



Substituting (111) into (107), the (µ, ν) = (t, t) component of
equation of motion has the following form:

0 = − 3

κ2
H2 +

36q2

µ2αa6
(
6Ḣ + 12H2

)α+2

{
α(α + 1)

4
ḦH +

α + 1

4
Ḣ2

+

(
1 +

13

4
α + α2

)
ḢH2 +

(
1 +

7

2
α

)
H4

}
. (112)

The accelerated FRW solution of (112) exists

a = a0t
α+1

3

(
H =

α + 1

3t

)
, a6

0 ≡
κ2q2 (2α− 1) (α− 1)

µ2α3 (α + 1)α+1 (
2
3 (2α− 1)

)α+2
.

(113)



Eq.(113) tells that the universe accelerates, that is, ä > 0 if α > 2.
If α < −1, the solution (113) describes shrinking universe if t > 0.
If the time is shifted as t → t − ts (ts is a constant), the
accelerating and expanding universe occurs when t < ts . In the
solution with α < −1 there appears a Big Rip singularity at t = ts .
For the matter with the relation p = wρ, where p is the pressure
and ρ is the energy density, from the usual FRW equation, one has

a ∝ t
2

3(w+1) . For a ∝ th0 it follows w = −1 + 2
3h0

, and the
accelerating expansion (h0 > 1) of the universe occurs if
−1 < w < −1

3 . For the case of (113), one finds

w =
1− α

1 + α
. (114)

Then if α < −1, we have w < −1, which is an effective phantom.
For the general matter with the relation p = wρ with constant w ,
the energy E and the energy density ρ behave as E ∼ a−3w and
ρ ∼ a−3(w+1). Thus, for the standard phantom with w < −1, the
density becomes large with time and might generate the Big Rip.



B. Dynamical cosmological constant theory: an exact
example

the following action similar to the one under consideration has
been proposed:

I =

∫
d4x

√−g

[
R

2κ2
+ α0R

2 +

(
κ4∂µϕ∂µϕ

)q

2qκ4f (R)2q−1
− V (ϕ)

]
,

(115)
where f (R) is a proper function. When the curvature is small, it is
assumed f (R) behaves as

f (R) ∼ (
κ2R2

)m
. (116)

Here m is positive. When the curvature is small, the vacuum
energy, and therefore the value of the potential becomes small.
Then one may assume, for the small curvature, V (ϕ) behaves as

V (ϕ) ∼ V0 (ϕ− ϕc) . (117)

Here V0 and ϕc are constants. If q > 1/2, the factor in front of
the kinetic term of ϕ in (115) becomes large.



There is an exactly solvable model which realizes the above
scenario. Let us choose

f (R) = βR2 , V (ϕ) = V0 (ϕ− ϕc) . (118)

Here β is a constant. R2 term is neglected by putting α0 = 0 in
(115) since the curvature is small. Searching for the solution (77)
in sect.37 and choosing ϕ = ϕc + ϕ0/t2 or
ϕ = ϕc + ϕ0/ (ts − t)2, the following restrictions are obtained

ϕ2
0 =

54β (−1 + 2h0)
3 h4

0

κ2
(
12h2

0 − 2h0 − 1
) , V0 = ± 3h0 + 1√

6κ2
(
12h2

0 − 2h0 − 1
)
(−1 + 2h0)

.

(119)
Since ϕ2

0 should be positive, one finds

when β > 0 ,
1−√13

12
< h0 <

1 +
√

13

12
or h0 ≥ 1

2
,

when β < 0 , h0 <
1−√13

12
or

1 +
√

13

12
< h0 ≤ 1

2
.(120)



For example, if h0 = −1/60, which gives weff = −1.025, we find

κV0 = ±19

34

√
15

31
= ±0.388722... . (121)

For h0 > 0 case, since R = 6Ḣ + 12H2, the curvature R decreases
as t−2 with time t and ϕ approaches to ϕc but does not arrive at
ϕc in a finite time, as expected .
As H behaves as h0/t or h0/(ts − t) for (77) in sect.37, if we
substitute the value of the age of the present universe
1010years∼ (10−33eV)−1 into t or ts − t, the observed value of H
could be reproduced, which could explain the smallness of the
effective cosmological constant Λ ∼ H2. Note that even if there is
no potential term, that is, V0 = 0, when β < 0, there is a solution

h0 = −1

3
<

1−√13

12
= −0.2171... , (122)

which gives the EoS parameter : w = −3, although w is not
realistic. Playing with different choices of the potential and
non-linear coupling more realistic predictions may be obtained.



V. Late-time cosmology in modified Gauss-Bonnet gravity
A. f (G ) gravity

Our next example is modified Gauss-Bonnet gravity. Let us start
from the action :

S =

∫
d4x

√−g

(
1

2κ2
R + f (G ) + Lm

)
. (123)

Here Lm is the matter Lagrangian density and G is the GB
invariant: G = R2 − 4RµνR

µν + RµνξσRµνξσ. By variation over
gµν one gets:

0 =
1

2κ2

(
−Rµν +

1

2
gµνR

)
+ Tµν +

1

2
gµν f (G )− 2f ′(G )RRµν

+4f ′(G )Rµ
ρR

νρ − 2f ′(G )RµρστRν
ρστ − 4f ′(G )RµρσνRρσ + 2

(∇µ∇ν f ′(G )
)
R

−2gµν
(∇2f ′(G )

)
R − 4

(∇ρ∇µf ′(G )
)
Rνρ − 4

(∇ρ∇ν f ′(G )
)
Rµρ

+4
(∇2f ′(G )

)
Rµν + 4gµν

(∇ρ∇σf ′(G )
)
Rρσ − 4

(∇ρ∇σf ′(G )
)
Rµρνσ , (124)

where Tµν is the matter EM tensor.



By choosing the spatially-flat FRW universe metric (75) in sect.37,
the equation corresponding to the first FRW equation has the
following form:

0 = − 3

κ2
H2 + Gf ′(G )− f (G )− 24Ġ f ′′(G )H3 + ρm , (125)

where ρm is the matter energy density. When ρm = 0, Eq. (125)
has a deSitter universe solution where H, and therefore G , are
constant. For H = H0, with constant H0, Eq. (125) turns into

0 = − 3

κ2
H2

0 + 24H4
0 f ′

(
24H4

0

)− f
(
24H4

0

)
. (126)

For a large number of choices of the function f (G ), Eq. (126) has
a non-trivial (H0 6= 0) real solution for H0 (deSitter universe).



We now consider the case ρm 6= 0. Assuming that the EoS
parameter w ≡ pm/ρm for matter (pm is the pressure of matter) is
a constant then, by using the conservation of energy:
ρ̇m + 3H (ρm + pm) = 0, we find ρ = ρ0a

−3(1+w). The function
f (G ) is chosen as

f (G ) = f0 |G |β , (127)

with constant f0 and β. If β < 1/2, f (G ) term becomes dominant
compared with the Einstein term when the curvature is small. If
we neglect the contribution from the Einstein term in (125), the
following solution may be found

h0 =
4β

3(1 + w)
, a0 =

[
− f0(β − 1)

(h0 − 1) ρ0

{
24

∣∣h3
0 (−1 + h0)

∣∣}β
(h0 − 1 + 4β)

]− 1
3(1+w)

.

(128)



Then the effective EoS parameter weff (82) in sect.37 is less than
−1 if β < 0, and for w > −1 is

weff = −1 +
2

3h0
= −1 +

1 + w

2β
, (129)

which is again less than −1 for β < 0. Thus, if β < 0, we obtain
an effective phantom with negative h0 even in the case when
w > −1. In the phantom phase, there might seem to occur the
Big Rip at t = ts [?]. Near this Big Rip , however, the curvature
becomes dominant and then the Einstein term dominates, so that
the f (G ) term can be neglected. Therefore, the universe behaves
as a = a0t

2/3(w+1) and as a consequence the Big Rip does not
eventually occur. The phantom era is transient.



B. f (G , R) gravity
It is interesting to study late-time cosmology in generalized
theories, which include both the functional dependence from
curvature as well as from the Gauss-Bonnet term :

S =

∫
d4x

√−g (f (G , R) + Lm) . (130)

The following solvable model is considered:

f (G , R) = Rf̃

(
G

R2

)
, f̃

(
G

R2

)
=

1

2κ2
+ f0

(
G

R2

)
. (131)

The FRW solution may be found again:

H =
h0

t
, h0 =

3
κ2 − 2f0 ±

√
8f0

(
f0 − 3

8κ2

)

6
κ2 + 2f0

. (132)

Then, for example, if κ2f0 < −3, there is a solution describing a
phantom with h0 < −1−√2 and a solution describing the
effective matter with h0 > −1 +

√
2. Late-time cosmology in other

versions of such theory may be constructed.



Inhomogeneous equation of state of the universe dark fluid

Let us remind several simple facts about the universe filled with
ideal fluid. By using the energy conservation law
0 = ρ̇ + 3H (p + ρ), when ρ and p satisfy the following simple EOS
p = wρ with constant w , we find ρ = ρ0a

−3(1+w). Then by using
the first FRW equation (3/κ2)H2 = ρ, the well-known solution

follows a = a0 (t − t1)
2

3(w+1) (w > −1) or a0 (t2 − t)
2

3(w+1) w 6= −1

(w < −1) and a = a0eκt
√

ρ0
3 when w = −1, which is the deSitter

universe. Here t1 and t2 are constants of the integration. When
w < −1, there appears a Big Rip singularity in a finite time at
t = t2.



In general, the singularities in dark energy universe may behave in
a different way. Type I (“Big Rip”) : For t → ts , a →∞, ρ →∞
and |p| → ∞ Type II (“sudden”) : For t → ts , a → as , ρ → ρs or
0 and |p| → ∞ Type III : For t → ts , a → as , ρ →∞ and
|p| → ∞ Type IV : For t → ts , a → as , ρ → 0, |p| → 0 and higher
derivatives of H diverge. This also includes the case when ρ (p) or
both of them tend to some finite values while higher derivatives of
H diverge. Here ts , as and ρs are constants with as 6= 0.



The singularities in the inhomogeneous EoS dark fluid
universe

One may start from the dark fluid with the following EOS:

p = −ρ− f (ρ) , (133)

where f (ρ) can be an arbitrary function in general. The choice
f (ρ) ∝ ρα with a constant α was proposed. Then the scale factor
is given by

a = a0 exp

(
1

3

∫
dρ

f (ρ)

)
, (134)

and the cosmological time may be found

t =

∫
dρ

κ
√

3ρf (ρ)
, (135)

As an example we may consider the case that

f (ρ) = Aρα . (136)



Then we find :

I In case α = 1/2 or α = 0, there does not appear any
singularity.

I In case α > 1, when t → t0, the energy density behaves as
ρ →∞ and therefore |p| → ∞. Then the scale factor a is
finite even if ρ →∞. Therefore α > 1 case corresponds to
type III singularity.

I In α = 1 case, if A > 0, there occurs the Big Rip or type I
singularity but if A ≤ 0, there does not appear future
singularity.

I In case 1/2 < α < 1, when t → t0, all of ρ, |p|, and a diverge
if A > 0 then this corresponds to type I singularity.



I In case 0 < α < 1/2, when t → t0, we find ρ, |p| → 0 and
a → a0 but

ln a ∼ |t − t0|
α−1

α−1/2 . (137)

Since the exponent (α− 1)/(α− 1/2) is not always an integer,
even if a is finite, the higher derivatives of H diverge in
general. Therefore this case corresponds to type IV singularity.

I In case α < 0, when t → t0, we find ρ → 0, a → a0 but
|p| → ∞. Therefore this case corresponds to type II
singularity.



At the next step, we consider the inhomogeneous EOS for dark
fluid, so that the dependence from Hubble parameter is included in
EOS. This new terms may origin from string/M-theory, braneworld
or modified gravity

p = −ρ + f (ρ) + G (H) . (138)

where G (H) is some function.
In general, EOS needs to be double-valued in order for the
transition (crossing of phantom divide) to occur between the
region w < −1 and the region w > −1. Then there could not be
one-to-one correspondence between p and ρ. In such a case, we
may suggest the implicit, inhomogeneous equation of the state

F (p, ρ, H) = 0 . (139)



The following example may be of interest:

(p + ρ)2 − C0ρ
2

(
1− H0

H

)
= 0 . (140)

Here C0 and H0 are positive constants. Hence, the Hubble rate
looks as

H =
16

9C 2
0 H0 (t − t−) (t+ − t)

. (141)

and

p = −ρ

{
1 +

3C 2
0

4H0
(t − t0)

}
, ρ =

28

33C 4
0 H2

0κ2 (t − t−)2 (t+ − t)2
.

(142)



In (141), since t− < t0 < t+, as long as t− < t < t+, the Hubble
rate H is positive. The Hubble rate H has a minimum H = H0

when t = t0 = (t− + t+) /2 and diverges when t → t±. Then one
may regard t → t− as a Big Bang singularity and t → t+ as a Big
Rip one. As clear from (142), the parameter w = p/ρ is larger
than −1 when t− < t < t0 and smaller than −1 when t0 < t < t+.
Therefore there occurs the crossing of phantom divide w = −1
when t = t0 thanks to the effect of inhomogeneous term in EOS.
In principle, the more general EOS may contain the derivatives of
H, like Ḣ, Ḧ, ... More general EOS than (139) may have the
following form:

F
(
p, ρ, H, Ḣ, Ḧ, · · ·

)
= 0 . (143)


