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= Structure of the talk:

1 Basics of the Palatini (R) field equations.

0 What is new in these theories?

1 Infrared and Ultraviolet corrected models.

1 Applications to the early Universe and Quantum Gravity.
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= The metric equations can be writtentimo alternative waysuUsing gy :

2 _
Gw(Q) = ?_RTLN - %gw + f—lR (DpDv fr — g fR) 2f2 (au frOy fR— guv (0 fR)Z)

Or using hy : Gu'(h) = fF%( ) {T“ — (Rgf(zf)éu }

Gonzalo J. Olmo Paris, 29June-03July, Invisible Universe 2009 - p. 4/17




e About thistalk ...

Basics of Palatini
e Basics of Palatini

e What's new

e Hydrogen and Palatini
e Ground state |

e Ground state Il

e Non-perturbative effects
e Lessons from Hydrogen

UV models

The End

Gonzalo J. Olmo

Basics of Palatini

The action is defined ¢ Sg,I",Ym] = 2_i2 [ d**%/=gf(R) + Sn[dw, W
In Palatini, metric and connection are independent fields:

Metric variation: frRy (") — %gw =K?Ty Wwhere fr=df/dR

Connection variation IiB [/—gfrg™] =0

Using the trac« Rfr — 2f = k°T , which implies R= % (T) , it follows

that [, is the Levi-Civita connection ¢ hyy = fr(T)gp -

The metric equations can be writtentimo alternative waysuUsing gy :

G (9) = I]E_:Tw — %gw =+ f—lR (DpDv fr— guvaR) 2f2 (aufRav fr—
Or using hy : Gu'(h) = fz( ) {T“ — (Rgf(zf)éu }

In vacuum, both reduce 1 Gy = —Nef 0w

Rifr—f

where Aegff = 2t |y

39w (0fR)?)
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= |R-corrected models are problematatoms are unstablg.j.o.pro77(2008)

In f(R)=R— “—F: Hydrogen would disintegrate in less than 2 hollirs

= UV-corrected models may be designedtoid the Big Bang singularity
[ Bouncing and cyclic cosmologiese very common in Palatirfi(R).
I There exist important links between Palatini and the effect
dynamics of_oop Quantum Cosmology
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o boltthis k. = The curved-space Dirac equati (iA*D, —m)y =0 turns into
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= The positive energy spincn in thenon-relativistic limitsatisfies:
£ = { 7w [(P— A2 — 8- B +-eAy+V(Q) +Am)
where E=mg+Z, T~-m'n, Am=m—my , and

V(Q) = mis [uo(DQ x 01) — 2ie(A- 0Q) + 2(01Q - 0) + 020 — |T1Q2

The gravity lagrangian induces new interaction tek€) andAm
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Ground state N 0,0)

Electron decay in Hydrogen due to 1/R
(Ground State)

r=26a,

= The potential well induced bfm tends tC Am~ —0.13m~ —5000x 136 eV

= This well triggers the flux of probability density to the esite of the atom.
= The electron escapes similarly as in nuclear alpha decay.

= Inthe 1/Rmodel, the half life of the electron iz ~ 6 x 10° s.
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Lessons from Hydrogen

= |R-corrected models are characterized by a low density scathws

reached at late times in cosmological models, when the agdraigergy
density is very low.

= Such energy scales can also be reached in atomic systentylikegen

= Perturbative calculations show that Hydrogen is unstabdietui

corrections in Palatini gravity.

= Strongnon-perturbative gravitational effecsise near the zeros (radial

and angular!) of the wave functions.

Strong gravitational effects occur ik models when their
characteristic density scale is reached.
Are there similar effects in UV models?
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A Non-singular Universe

= In the simplestJV model, f(R) =R+ R we find

H? =

Rp

3

[1—(1—9\/\/2)@2—;’}2 &
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= In the simplest)V model, f(R) =R+ , we find
2(1-3w)k2 (1-3w)2 K2
H2 - o (1 2R) (“TZ %) _ K
T

= Non-singular Universes may arise depending on the P =wp

Flat UniverseK = 0.
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Closed UniverseK > 0.

a

— R-RJR, w=0
0.4}
R+R¥/R, w=1 ;
0.2
L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L [ t
-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0
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A Non-singular Universe

= In the simplestJV model, f(R) =R+ R we find

Rp
e About this talk ... 2(1—3w)|<2p (1—3w)2 K2p
2 <1+R—) (1+T R_)
HZ __Kp p P/ _ K
Basics of Palatini - 3 K2 2 a2
[1-(1-0w?) 2
P

e Characterizing the Bounce

« Palatii (R) and LQC = Non-singular Universes may arise depending on the P =wp

e Numerics and Fits
e Summary and Conclusions

e End Flat UniverseK = 0. Closed UniverseK > 0.
a) at)
GR w=0 —
GR w=1 |-.
R-R?/R,
R+R/R, 06l
// — R-R?/R, w=0
/ 0.4r i
" 0.4r
R+R’/R, w=1 [
0.21 ’ 0.2}
07 06 _05 -04 03 -0z -01 oo 30 25 20 15  -“10  Zos 00"

= |n metric formalismthere areno bouncing solutionef this type.
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Characterizing the Bounce.

= For a generaf (R) theory, the Hubble function is given byP(= wp)

fr (K2p+ @) 3K

2 2 f
. _— — = = — RR
o About this talk ... 3H PRV 2 a2 Where Ag = (14 W)(I=SWK P pReot yomm il
R+ 2/\1
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Characterizing the Bounce.

= For a generaf (R) theory, the Hubble function is given byP(= wp)

3H? =

(K2p+RfR f)

(frt3A

A)°

3K f
— T3 where Ap=(1+w)(1-3w)kZp prBR .
22 where Aq = (14+w)( K PR S i

= Cosmic bounce occurs whene' H?2 = 0 . When K = 0 , this may
happenif  [C.Barragan, G.J.O, and H.Sanchis-Alepuz , To appear]
O Firstcase: fr— 0 andfg+3A; > 0.

0 Second case K2p +

RfR f

— 0 andfr—+ %’/\1 > 0.
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Characterizing the Bounce.

= For a generaf (R) theory, the Hubble function is given byP(= wp)

(K2p+ Rfr— f)
3H2 — e where A1:(1+W)(1—3w)K2pm|_\]:|3TBf§ .

( fr+ %/\1) &

= Cosmic bounce occurs whene' H?2 = 0 . When K = 0 , this may
happenif  [C.Barragan, G.J.O, and H.Sanchis-Alepuz , To appear]
O Firstcase: fr— 0 andfg+3A; > 0.

0 Second case K2p + RfR f

— 0 andfr—+ %’/\1 > 0.

= WhenK # 0, the discussion is not as clean and requires a model by model
study.

Paris, 29June-03July, Invisible Universe 2009 - p. 13/17




Characterizing the Bounce.

= For a generaf (R) theory, the Hubble function is given byP(= wp)

<K2p+RfR f) a

o About this talk ... 3H2 = (fR—l—%/\l) — 2 Where Al:(1+w)(1—3w)|<2pm|_:'3TEfE .
Basics of Palatini

= Cosmic bounce occurs whene' H2 =0 . When K =0 , this may
happenif  [C.Barragan, G.J.O, and H.Sanchis-Alepuz , To appear]
S 1 Firstcase: fr—0 andfr+3A;>0.

The End RfR f

0 Second case K2p +

— 0 andfr+3A;1 > 0.

= WhenK # 0, the discussion is not as clean and requires a model by model
study.

It is possible to construct Palatif{R) theories as successful as GR at
low energies but free from high curvature singularities.
Is this just an accident or is there anything de@per
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LQC and Palatini f(R)

= |oop Quantum Cosmoloagg an approach based on the quantization
techniques of canonical quantum gravity (LQG).

= Though the fundamental equations are discrete, in the eaamidimit one

can find the following effective o.d.e. :

H2 = ) , With  perit = 0.41Ppjanck

a
a

Bep(1- 2

(14

Perit

Pcrit

)—4nGP(1 2P

Perit )
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The End

= No new degrees of freedom ir)C. Matter alone can cure the singularity.

= Thenon-perturbativelynamics of can be captured by a PalatiiR).
0 Use the trace equatic (3w— 1)k?p = Rfr — 2f to find

p=p(Rf,fr).
0 ForK =0 andw=1: 8nGp (1— i) _ fr(Klpt(Rfe=1)/2)

pCI’it (f . 12K2prR )2
R™2& frr-R)

1 Simple manipulations lead to the following o.d.e.:

_ A= ./2(R fr—2F)(2%. — |R fr — 2f]),
frr— —fR< Afz—B ) where V2 fr—2f)(2%; — [& Tr—2f])
2(R tfr—3f)A+% B B = 2.\/R. fr(2&. fr — 3f), and®. = k2p.
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Numerics and Functional Fits
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® This f(R) lagrangian exactly reproduces the dynamics of isotroi€.
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® This f(R) lagrangian exactly reproduces the dynamics of isotroi€.

B Thecosmic bounceccursa R= —-12R. , where fr — 0 .

Palatinif (R) is able to fully capture the dynamicslofC even though
the form ofthe lagrangian near the bounce cannot be estimated by
perturbative methods
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Summary and Conclusions

= Palatinif(R) theories modify the gravitational dynamics without addamy new

degrees of freedom.
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and lead to bouncing cosmologies, which does not occur inerfetmalism.
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can be exactly reproduced by a Palafi(iR) action.Palatini theories could
play an important role in phenomenological descriptionguaEntum gravity.
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IR andUV corrections w.r.t. the E-H lagrangian remain (almost)sible until their
respective density scales are reached. The new effectarapme-perturbatively.

IR models are in conflict with microscopic physics.

UV models such a R+ R?/Rp strongly modify the early-time cosmic dynamics
and lead to bouncing cosmologies, which does not occur inerfetmalism.

can be exactly reproduced by a Palafi(iR) action.Palatini theories could
play an important role in phenomenological descriptionguaEntum gravity.

Future work:
L Are black holes non-singular in PalatifjR)?

[ How is the dynamics of extended Palatini theori¢R, RyRH,...) ?
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