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Some notation

* From the time-like flow 1% we construct the projection onto
surfaces orthogonal to the flow: (hgqp = gap + UqUsp.)

Three-volume form: (£, = nabcdud 5

Covariant convective derivative on scalar:(f = u*V,, f.)

Spatial covariant derivative: Vof =k, Vs /)

Zo S S S

Kinematics of u® gives geometrv of congruence of flow lines.
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Structure of the 1+3 equations
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Structure of the 1+3 equations

DAY

R IS LSy, &
oA e 0 8| S

Wednesday, 1 July 2009



Structure of the 1+3 equations

R IS LSy, &
oA UL

Wednesday, 1 July 2009



Structure of the 1-

-3 equations




Structure of the 1+3 equaftions

=

Eroner) () (o) G
AN

R IS LSy, &
oA LU




Structure of the 1+3 equations
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Fourth order gravity

The class of models we will consider can be derived from the
classical action:

A= [ day=glf(R)+ Ln] |
J
Varying the action with respect to the metric gives the

following field equations:

1

1
f/Gab — f/ (Rab — 5 gabR) — ng + igab (R — Rf/) + vbvafl — gabvcvcf/ ’

Gap = TJZ + T£ — chgt ;
This last step is extremely important as it allows us to
treat 4th order gravity as standard GR in the presence

of two effective fluids. It is this that makes using the J\N\\ n
covariant approach particularly straightforward.
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Fourth order gravity

The class of models we will consider can be derived from the
classical action:

e / 2/~ [f(R) + Lom] .

Varying the action with respect to the metric gives the
following field equations:

1 1
f'Gap = ' (Rab 3 gabR) =15} + 59a0 (B = Rf') + ViVaf' = g VeVef

Gap = T;Z ar be chgt )
This last step is extremely important as it allows us to
treat 4th order gravity as standard GR in the presence

of two effective fluids. It is this that makes using the J\N\\ .
covariant approach particularly straightforward.
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The energy-momentum tensor of the curvature “fluid” can
be decomposed as follows:

R 1, [ (Rf f) @f//R_Ff//@QR_'_f//ub@R] ’

S
pR _ ;/ [ (f Rf)—I—f”R—I—3me2—|- @f//R__f//v2R_|_

-3 f”’@aRﬁaR -3 f” uNR] ,

1 ~
Note no qafla — f, [][‘///Rv R_|_f//v R_ f//vaR] :

background |
contribution. § 7.

= "V B+ [V @BV R+ o R

uCL
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Linearisation
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Linearisation
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Linearisation

Chm — G

!
ED D

O + 102 +{Gap0 ™) Rwaw - Vi, +Hitgl)+ L (1" + 3p'*") =
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Linearisation

D — G

— @D
O + 102 +—@ “Ug +.+ ('t + 3p™*) =

@_|_%@2 Vaua_|_ (,utOt—|—3ptOt) 0
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Linearisation

D — G

— @D
O + 102 +—@ “Ug +.+ ('t + 3p™*) =
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The linear gravitational equations

Propagation

Constraint

o-jer s o) - QD
0

We +2Hw, + lcurl A, =

Uab + 2H0ab + Eab @(aAb> — .‘7

ab + 3HEab — curl Hab ‘I' ,LL + p Uab

ab +3HH_, + curl B —

Vo, — curlw, — Zv ©

curl oy, + V<awb> H,, =0,
Y

Véw, =0,
AN \A

a*‘V'- - N
SRA -

wl
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The linear conservation equations

T’mb !/

ab _ a
The Bianchi identities: f’ o fe
R:b
T, = Iz T R
m_ g N
Matter{ﬁf - (,um p )
Vo (™ +p™)
f// :
Ve —@uﬁ+p>+umfg,

Curvature
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Perturbation variables

The natural set of inhomogeneity variables are:

S? - on
AP =—V?u™, Z=8°V?0, C’=S3V2R,J

X 2

O, ¢

—

Spherical ~

clumping T
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Perturbation equations

Scalar perturbations governed by the 4th order system:

A,, = wOA,, —(1+w)Z,
. S £/ . 2 R R "
Z__(Rf 2@)23+[aw68x&u+2)u 2wO2 + 3w (u +3p)]A A

3 w+1)  f 6(w + 1) e
1 1 f f// f// f// 2 f(3) il s 2
Ll L F 1RO R - —V*A,, — —=V°R
HlaarE et (f) 7| M e )
R:%—LRA,,L,
w4+ 1
- e : (Bw—1) p w f! w : 3
= <@+2Rf,,>§re—Rz—[ . F+3w—+1< UL (+1)R<@ 3Rf”)]Am
K (1f f<4> f<3> L Loe SfO 1 f 1 p I =2 )

C 4 2Rf// f(g) f// - 1/ 2@f” f// 2
§+<§@+ i )Z—Zf,Am+{2R@f - (f—2u+2R@f )} R VR]_O

DAY

E’ e ) v‘\ﬂ'- !V
Vel Y (o)
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A simple example: r" gravity

Point Coordinates (x, y, 2) Scale Factor
A [0, 0, 0] a— ao(t — to)
B [—1,0,0] a=a(t—ty)'"/2 (only for n = 3/2)
2(n—2) 4n—5 (1—n)(2n—1)
¢ on—1 » 2n—7 0 si=enll e
=K ___ if k#0
D [2(1 — n),2(n — 1)2,0] e
a—= apt if k=0
E [-1 — 3w, 0, —1 — 3w] a=ap(t— 1)
F [1 — 3w, 0,2 — 3uw] a=a(t— ty)'"/2 (only for n = 3/2)
G [_3(n-1)(1+w) (n—1)[4n—3(w+1)]
n 9 2”2 I

2n
— ao t3(1+w)

n(134+9w)—2n? (4+3w) —3(1+w)
2n2

(1—m)(2n—1)

Cl(S = Sot w2

|.36<n<I.5
\.\ 2n J\’V\
G S = S5pt3a+w) -:‘,:} "“"' Y

»‘-'.\l m-. p
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The dynamical systems approach

_f _ R _
T PH YT 62’ C T 6fH?
O — Hm, K — k q = dlog F' _1: f!
3f' H?’ a2H2 ' "~ \dlogR R
d
d—]:ff —e(2K+22— 2>+ (K +y+ 1) +Qe(—3w—1) + 2,
W e (2y + 2K + 2q + 4)
el .
AN ye 4y q ;
Autonomous dz
— =ze (2K —z+ 2y +4) + xeyq,
set of equations dN ( y+4) Y4
ds?
N =Qe (2K —x+ 2y — 3w+ 1),
dK
— = Ke (2K 4+ 2y + 2
T = Ke (2K +2y +2),
Constraint * l=—K—-—x—y+ 2+,
¢ Carloni, Dunsby Capozziello, Troisi (CQG, 2005) ‘/\N\\ - .
e Amendola et. al. (PRD, 2007) SRR N
® Carloni, Dunsby, Troisi (GRG, 2009) E»é: z ",‘;":J_ i =
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Large-scale density perturbations

After some calculation we find that large-scale density

perturbations evolve according to the following 3rd order equation:

(n—l)Am—(n—1)< _5>—+D1(naw)t—2+p2<n7w)—

w41 t t3

aF Dg(n, w) Co Ut 3(‘:4’11) o =0

Am p— Klt_l —|— KQta+|w:0 _|_ tha—|w:0 _ K4_t2—? :

L v (n—1)(n(32n(8n — 19) + 417) — 81)

6(n—1) ’
K| B 9(n(12n — 31) + 18)
=0 8(4n — 9) (12n3 — 19n2 — 3n + 9) -
Nontrivial dependence on n Eé&-:\!j’%.w&ﬂ_ﬁ- N
BRAVERY GRO
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The long wavelength perturbations grow for all
values of n, even for an accelerated background!

2
-~

Do

\4”“.5" -~
4’..‘4 Y (U -
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The Matter Power Spectrum

An important quantity to characterized the small scale
perturbations in the power spectrum

(A (k1)Ap (ko)) = P(k1)d(k1 + ka)

This quantity tells us how the fluctuations of matter depend on
the wave number at a specific time and carries information on
the amplitude of the perturbations on a given scale.

In GR the power spectrum on large scales is constant, while on
small scales it is suppressed depending on the nature of the
cosmological fluid(s).

The case of pure dust is special: perturbations are

AN

E-'.:‘:i!;;;’ R SN o
EFVANE] Ll NI
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The Power Spectrum for R*-gravity (n>1)

logyg P(k)

n=1.1
_ n=12
n=1.23
7 n=14
n=1.5
_ n=1.06
n=1.7
logyg &
On large and small scales the spectrum is scale-invariant.
. -
Oscillations can occur around a specific J\N\\
1 M~ CREISIVIL TS Y. S
value of k depending on the parameter “n”. A R
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The Power Spectrum for R“—gravity (n>1)

logy P(k) — 1.1

| =1.2

n=13

7 n=14

n=1.5

i n=1.6

n=1.7

logg k
On large and small scales the spectrum is scale-invariant.

Oscillations can occur around a specific J\N\\ .

value of k depending on the parameter “n” CLSVETOEY "

E- . -
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The Power Spectrum for R“—gravity (n>1)

logyg P(k)

1.1
1.2

|
=
3}

logo k

On large and small scales the spectrum is scale-invariant.

Oscillations can occur around a specific J\N\\ :
value of k depending on the parameter “n” CLSVETOEY "
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The Power Spectrum for R™-gravity (n>1)

logyq P(k) n=1.1
n=1.2
\ n=1.3
o
n=14
n=1.>5
T~ In=16
n=17
N\
logyg &

On large and small scales the spectrum is scale-invariant.

Oscillations can occur around a specific J\N\ VA

value of k depending on the parameter “n”. SR VL LTI S
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Is this result general?
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Is this result general?

We don’t know

(yet), BUT....
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Is this result general?

We don’t know

(yet), BUT....

 The k-structure of the perturbation equations is independent
of the theory of gravity,

¢ The interaction between fourth order gravity and matter is
peaked at certain specific scales and becomes k-independent
on large and small scales.

£ WORK IN PROGRESS with other models.
% PROBLEM: we don’t really know much about their background.

IF verified, this result would constitute a

clear and relatively easy way to probe m

fourth order gravity on cosmological scales. [T v mumeyags
= o - -
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Extending 1+3 to 1+1+2

* 143 spacetime split adopted to perturbations of
cosmological backgrounds.

* Many astrophysical systems have high degree of
symmetry.

* This suggests further decomposition of the 3 spatial
degrees of freedom relative to preferred spatial vector.

* We end up with a “1+1+2” split of spacetime.

* This provides an excellent framework for studying
spherically symmetric (SS) spacetimes and their

perturbations. A -
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The basic framework
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The basic framework

Projection tensor *
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The basic framework

Projection tensor *

Decomposition *
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The basic framework

Pro]ectlon tensor

Decomposition

Derivatives

-
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Decomposition of basic quantities

Kinematics of n¢ :

NNV ng = Ng,

A, =
Acceleration, expansion, ® = o0,n7,
twist and shear of “sheet” £ = %5ab5anb,

Cab = 5{anb}°

Kinematics

i _ V'\
‘/\N\\
S e s
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Decomposition of basic quantities

NNV ng = Ng,

A, =
Acceleration, expansion, ® = o0,n7,
twist and shear of “sheet” £ = %5ab5anb,

Cab = 5{anb}°

Kinematics

Weyl
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Equations for SS spacetimes

o Lo 1, 2f
O = ng +3R 3f,+f,X(q5+2A)+A¢,
. . Lf 1 £
Field A = —A*—Ap+-=——-R—"-XA,
Equations X gb 6 f , 3 f /
R = X,
R 1Rf/ 9 f f///XQ
X = —grtipXo- "5 —XA
E' = —FE*Ax .
Null
geodesics 1
K= Bl—r) (56— A
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Some general results

Condition for the existence of solutions with constant
scalar curvature is:

2f(Ro) — Rof'(Ro) =0. Barrow and Ottewill (1983)

Condition for the existence of the Schwarzshild

solution is:
f(0)/5'(0) =0.

This holds for many (but not all) classes of theories.... e.g,
R", R+ aR", R/(1+ AR)

The 1+1+2 equations can be used to generate exact

SS solutions —» test violation of Birkhoff. J\M\ "
1 1 RISV L IES.Y.
Goswami et al, 2009... on axXiv very soon. S\ A LD
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Gravitational Lensing in f(R) gravity

The 1+1+2 approach is ideal for studying
the lensing problem

IEx® | dv
.
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An example: Clifton’s solution

A number of exact solutions exist, e.g., Clifton (2006)

The bending angle can be easily found:

de Swart et al, Nkioki et al, 2009 (see arXiv soon) W e .
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] r0=2
] r0=4
10=6
] r0=8
] =10

For values of n close to 1, the bending angle only differs
from the GR result by a few percent.

1.25 g 1 r+=1000

120"

1.15 ] r#=2000
&~

1S 1100

1.05F
L r+=3000

1.00-

0.95 : I O S S S T SN [N Y O S |
0.5 0.6 0.7 0.8 0.9 1.0 11 1.2 | r+=4000

n

This shows that the bending angle is /\/\/\\ -

independent of 7'« (0 0

o v
RS .'"A‘.".\‘l; ‘& HE_J ~_
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The Future.........

* Extend to multi-fluid systems e.g. CDM, Baryons +
Radiation (Abebe & Abdelwahab),

* Generate spherically symmetric solutions (Goswami et al),

* The evolution of null geodesics in f(R) gravity -
observational relations etc.

* The Newtonian limit and Newtonian perturbation theory

* and much much more if f(R) survives observational
scrutiny!!
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Please visit..........
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