

Higgs phase of gravity and ghost condensate

Shinji Mukohyama (IPMU, U of Tokyo)

Introduction

- Gravity at long distances
 Flattening galaxy rotation curves
 extra gravity

 Dimming supernovae
 accelerating universe
- Usual explanation: new forms of matter (DARK MATTER) and energy (DARK ENERGY).

Dark component in the solar system?

Precession of perihelion observed in 1800's...

which people tried to explain with a "dark planet", Vulcan,

But the right answer wasn't "dark planet", it was "change gravity" from Newton to GR.

Can we change gravity in IR?

Change Theory? (eg. Massive gravity, DGP model)

Can we change gravity in IR?

Change Theory? (eg. Massive gravity, DGP model) Macroscopic UV scales Cannot be decoupled

Change State? Higgs phase of gravity The simplest: Ghost condensation

Arkani-Hamed, Cheng, Luty and Mukohyama, JHEP 0405:074,2004.

Higgs mechanism

- Spontaneously breaks gauge symmetry. (Theory itself has gauge symmetry.)
- Gives mass to gauge boson.
- Changes Gauss law to Yukawa law!
- Can describe weak interaction!

Ghost condensation

Arkani-Hamed, Cheng, Luty and Mukohyama, JHEP 0405:074,2004

- Spontaneously breaks diffeo invariance. (Theory itself has diffeo invariance.)
- Gives "mass" to graviton.
- Adds oscillating time-dependent potential to Newton potential! (But the time scale is very long.)

= Higgs phase of gravity

	Higgs mechanism	Ghost condensate
Order parameter	$\langle \Phi \rangle \uparrow_{V(\Phi)}$	$\left<\partial_{\mu}\phi\right>\uparrow^{P\left((\partial\phi)^{2}\right)}$
	$\longrightarrow \Phi$	\rightarrow ϕ
Instability	Tachyon $-\mu^2 \Phi^2$	Ghost $-\dot{\phi}^2$
Condensate	V'=0, V''>0	P'=0, P''>0
Broken symmetry	Gauge symmetry	Time translational symmetry
Force to be modified	Gauge force	Gravity
New force law	Yukawa type	Newton+Oscillation

For simplicity

$$L_{\phi} = P((\partial \phi)^{2})$$

$$f(\partial \phi)^{2}$$

$$Ghost condensation$$
is an attractor!

$$\partial_{t}[a^{3}P' \cdot \phi] = 0 \implies P' \phi \propto a^{-3} \rightarrow 0$$

$$(a \rightarrow \infty)$$

$$(a \rightarrow \infty)$$

$$f(\phi^{2}) = 0$$

$$P'(\phi^{2}) = 0$$

	Higgs mechanism	Ghost condensate
Order parameter	$\langle \Phi \rangle \uparrow_{V(\Phi)}$	$\left< \partial_{\mu} \phi \right> \uparrow^{P((\partial \phi)^2)}$
	$\longrightarrow \Phi$	\rightarrow ϕ
Instability	Tachyon $-\mu^2 \Phi^2$	Ghost $-\dot{\phi}^2$
Condensate	V'=0, V''>0	P'=0, P''>0
Broken symmetry	Gauge symmetry	Time translational symmetry
Force to be modified	Gauge force	Gravity
New force law	Yukawa type	Newton+Oscillation

Systematic construction of Low-energy effective theory

Backgrounds characterized by

 $\Rightarrow \left\langle \partial_{\mu} \phi \right\rangle \neq 0$ and timelike

♦Background metric is maximally symmetric, either Minkowski or dS.

Gauge choice: $\phi(t, \vec{x}) = t$. $\pi \equiv \delta \phi = 0$ (Unitary gauge) Residual symmetry: $\vec{x} \rightarrow \vec{x}'(t, \vec{x})$

Write down most general action invariant under this residual symmetry.

(\longrightarrow Action for π : undo unitary gauge!)

Start with flat background

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$$

$$\partial h_{\mu\nu} = \partial_{\mu} \xi_{\nu} + \partial_{\nu} \xi_{\mu}$$

Under residual ξ^{l}

$$\delta h_{00} = 0, \delta h_{0i} = \partial_0 \xi_i, \delta h_{ij} = \partial_i \xi_j + \partial_j \xi_i$$

Action invariant under
$$\xi^{i}$$

$$\begin{cases} \begin{pmatrix} h_{00} \end{pmatrix}^{2} & \mathsf{OK} \\ \end{pmatrix} & \overset{\text{space is good background.} \\ \begin{pmatrix} h_{00} \end{pmatrix}^{2} & \mathsf{C}^{*} & \mathsf{C}^{*} & \mathsf{C}^{*} \\ \end{pmatrix} \\ \overset{\text{space is good background.} \\ \overset{\text{$$

Leading nonlinear operator in infrared $\int dt d^3x \frac{\dot{\pi}(\nabla \pi)^2}{\tilde{M}^2}$ has scaling dimension 1/4. (Barely) irrelevant

Good low-E effective theory Robust prediction

So far, there is no conflict with experiments and observations if M < 100GeV.

Application to Cosmology!

Can drive inflation? **Ghost inflation:** Arkani-Hamed, Creminelli, Mukohyama and Zaldarriaga, JHEP 0404:001,2004 Similar to hybrid inflation but $\neq 0!$ NOT SLOW ROLL (D)**Scale-invariant perturbations** scaling dim of π cf. tilted ghost inflation, Senatore (2004) δρ $H\delta\pi$ $\delta\pi \sim M \cdot (H/M)^{1/4}$ $\sim M^2$ [compare $\frac{H}{M_{Pl}\sqrt{\varepsilon}}$

Prediction of Large (visible) non-Gauss.

Leading non-linear interaction

 $\frac{\dot{\pi}(\nabla\pi)^2}{M^2}$

non-G of ~ $\left(\frac{H}{M}\right)^{1/4}$ scaling dim of op. ~ $\left(\frac{\delta\rho}{\rho}\right)^{1/5}$

[Really "0.1" × $(\delta \rho / \rho)^{1/5}$ ~ 10⁻². VISIBLE. Compare with usual inflation where non-G ~ $(\delta \rho / \rho)$ ~ 10⁻⁵ too small.]

→ $f_{NL} \sim O(100)$, equilateral type

3-point function for ghost inflation

 $\frac{k_2}{k_1},$ $F(k_1,k_2,\overline{k_3}) =$ $\frac{1}{6}F$

$$k_3 / k_1 / k_2 / k_1$$

3-point function for "local" non-G

$$\varsigma = \varsigma_G - \frac{3}{5} f_{NL} \cdot \left(\varsigma_G^2 - \left\langle \varsigma_G^2 \right\rangle \right)$$

Can drive inflation?

- Ghosyels, in the regime of 01,2004 Hybrid ty validity of EFT!
- Scale invariant perturbation COBE Observationally H/M~10⁻⁴
- Obser distinguishable! large non-Gaussianity
 Equilateral-type with f_{NL}~O(100), τ_{NL}~O(10000)

Simplest case

- Exact shift symmetry, i.e. no potential
- May be called Λ GDM. $H^2 = H_0^2 \left[\Omega_m (1+z)^3 + (1-\Omega_m)\right]$ (FRW evolution is exactly like Λ CDM.)
- Linear perturbation equation (derived using the formalism in Mukohyama, JCAP 0610:011,2006)

$$(1+z)^{2} \frac{d^{2}g}{dz^{2}} + (A_{CDM}(z) + A_{mod}(z))(1+z) \frac{dg}{dz} + (B_{CDM}(z) + B_{mod}(z))g = 0$$

$$A_{CDM}(z) = -\frac{3[\Omega_{m} + 2(1 - \Omega_{m})(1+z)^{-3}]}{2[\Omega_{m} + (1 - \Omega_{m})(1+z)^{-3}]}$$

$$B_{CDM}(z) = \frac{3(1 - \Omega_{m})(1+z)^{-3}}{\Omega_{m} + (1 - \Omega_{m})(1+z)^{-3}}$$

$$g(z)a = \Delta = \frac{\vec{k}^{2}}{a^{2}} \frac{\Phi}{-dH/dt}$$

$$x(z) = -\frac{H_{0}^{2}M_{Pl}^{2}}{M^{4}} \frac{\vec{k}^{2}}{a_{0}^{2}H_{0}^{2}} (1+z)^{2}$$

$$y(z) = \frac{\alpha M^{2}}{M_{Pl}^{2}} \frac{\vec{k}^{2}}{a_{0}^{2}H_{0}^{2}} (1+z)^{-1}$$

Summary

- Ghost condensation is the simplest Higgs phase of gravity.
- The low-E EFT is determined by the symmetry breaking pattern. No ghost in the EFT.
- Gravity is modified in IR.
- Consistent with experiments and observations if M < 100GeV.
- Ghost inflation predicts large non-Gaussianity.
- Behaves like DE+DM for FRW background and large-scale linear perturbation.
- Cosmological perturbation may distinguish ghost condensation from DE/DM.

