Gauss Bonnet $f(G)$ gravity.

Paul M. Saffin ${ }^{1}$
(Shuang-Yong Zhou ${ }^{1}$, Ed Copeland ${ }^{1}$)

${ }^{1}$ University of Nottingham.
July 1, 2009

the cosmic pie

Wmap

- 1 CDM - fine tuning issue
- quintessence - long range forces, time dependent constants
- tachyon field - caustics
- phantom fields - unstable vacuum
- Chaplygin gas - strong ISW, loss of power in CMB
- modified gravity
- braneworld
- $f(R)$
- $f(G)$

Gauss-Bonnet

$$
G=R^{2}-4 R_{\mu \nu} R^{\mu \nu}+R_{\mu \nu \rho \sigma} R^{\mu \nu \rho \sigma}
$$

- topological in four dimensions
- it is one of a series of terms derived from the Euler class

$$
\epsilon_{\mu_{1} \mu_{2} \mu_{3} \mu_{4} \ldots} R^{\mu_{1} \mu_{2}} \wedge R^{\mu_{3} \mu_{4}} \ldots
$$

- α^{\prime} expansion of heterotic string
- other than the Einstein tensor and the metric,the Lovelock tensor is the unique object that
- is symmetric
- depends on $g_{\mu \nu}$ and its first two derivatives
- has vanishing divergence

$f(G)$ - how hard do you have to work?

- $S=\int d^{4} x \sqrt{-g}\left[\frac{1}{2} R+\mathcal{L}_{r}+\mathcal{L}_{m}\right]$

Starobinsky; Carroll,deFelice,Duvvuri,Easson,Trodden and Turner;Appleby and Battye; Amendola, Charmousis, Davis; Koivisto, Mota; Tsujikawa, Sami.

$f(G)$ - how hard do you have to work?

- $S=\int d^{4} x \sqrt{-g}\left[\frac{1}{2} R+\mathcal{L}_{r}+\mathcal{L}_{m}\right]$
- $\hookrightarrow S=\int d^{4} x \sqrt{-g}\left[f(R)+\mathcal{L}_{r}+\mathcal{L}_{m}\right]$

Starobinsky; Carroll,deFelice,Duvvuri,Easson,Trodden and Turner;Appleby and Battye; Amendola, Charmousis, Davis; Koivisto, Mota; Tsujikawa, Sami.

$f(G)$ - how hard do you have to work?

- $S=\int d^{4} x \sqrt{-g}\left[\frac{1}{2} R+\mathcal{L}_{r}+\mathcal{L}_{m}\right]$
- $\hookrightarrow S=\int d^{4} x \sqrt{-g}\left[f(R)+\mathcal{L}_{r}+\mathcal{L}_{m}\right]$
- $\hookrightarrow S=\int d^{4} x \sqrt{-g}\left[\frac{1}{2} R+f(G)+\mathcal{L}_{r}+\mathcal{L}_{m}\right]$

Starobinsky; Carroll,deFelice,Duvvuri,Easson,Trodden and Turner;Appleby and Battye; Amendola, Charmousis, Davis; Koivisto, Mota; Tsujikawa, Sami.

$f(G)$ - how hard do you have to work?

- $S=\int d^{4} x \sqrt{-g}\left[\frac{1}{2} R+\mathcal{L}_{r}+\mathcal{L}_{m}\right]$
- $\hookrightarrow S=\int d^{4} x \sqrt{-g}\left[f(R)+\mathcal{L}_{r}+\mathcal{L}_{m}\right]$
- $\hookrightarrow S=\int d^{4} x \sqrt{-g}\left[\frac{1}{2} R+f(G)+\mathcal{L}_{r}+\mathcal{L}_{m}\right]$
- $\hookrightarrow S=\int d^{4} x \sqrt{-g}\left[f(R, G)+\mathcal{L}_{r}+\mathcal{L}_{m}\right]$

Starobinsky; Carroll,deFelice,Duvvuri,Easson,Trodden and Turner;Appleby and Battye; Amendola, Charmousis, Davis; Koivisto, Mota; Tsujikawa, Sami.

$f(G)$ - how hard do you have to work?

- $S=\int d^{4} x \sqrt{-g}\left[\frac{1}{2} R+\mathcal{L}_{r}+\mathcal{L}_{m}\right]$
- $\hookrightarrow S=\int d^{4} x \sqrt{-g}\left[f(R)+\mathcal{L}_{r}+\mathcal{L}_{m}\right]$
- $\hookrightarrow S=\int d^{4} x \sqrt{-g}\left[\frac{1}{2} R+f(G)+\mathcal{L}_{r}+\mathcal{L}_{m}\right]$
- $\hookrightarrow S=\int d^{4} x \sqrt{-g}\left[f(R, G)+\mathcal{L}_{r}+\mathcal{L}_{m}\right]$
- $\hookrightarrow S=\int d^{4} x \sqrt{-g}\left[f(R, G, \ldots)+\mathcal{L}_{r}+\mathcal{L}_{m}\right]$

Starobinsky; Carroll,deFelice,Duvvuri,Easson,Trodden and Turner;Appleby and Battye; Amendola, Charmousis, Davis; Koivisto, Mota; Tsujikawa, Sami.

$f(G)$ - how hard do you have to work?

- $S=\int d^{4} x \sqrt{-g}\left[\frac{1}{2} R+\mathcal{L}_{r}+\mathcal{L}_{m}\right]$
- $\hookrightarrow S=\int d^{4} x \sqrt{-g}\left[f(R)+\mathcal{L}_{r}+\mathcal{L}_{m}\right]$
- $\hookrightarrow S=\int d^{4} x \sqrt{-g}\left[\frac{1}{2} R+f(G)+\mathcal{L}_{r}+\mathcal{L}_{m}\right]$
- $\hookrightarrow S=\int d^{4} x \sqrt{-g}\left[f(R, G)+\mathcal{L}_{r}+\mathcal{L}_{m}\right]$
- $\hookrightarrow S=\int d^{4} x \sqrt{-g}\left[f(R, G, \ldots)+\mathcal{L}_{r}+\mathcal{L}_{m}\right]$
- ...

Starobinsky; Carroll,deFelice,Duvvuri,Easson,Trodden and Turner;Appleby and Battye; Amendola, Charmousis, Davis; Koivisto, Mota; Tsujikawa, Sami.

dynamical systems - quintessence

$$
\begin{aligned}
H^{2} & =\frac{1}{3}\left[\frac{1}{2} \dot{\phi}^{2}+V(\phi)+\rho_{m}\right] \\
\dot{H} & =-\frac{1}{2}\left[\dot{\phi}^{2}+\left(1+w_{m}\right) \rho_{m}\right] \\
\ddot{\phi}+3 H \dot{\phi} & =-d V / d \phi
\end{aligned}
$$

dynamical systems - quintessence

$$
\begin{aligned}
H^{2} & =\frac{1}{3}\left[\frac{1}{2} \dot{\phi}^{2}+V(\phi)+\rho_{m}\right] \\
\dot{H} & =-\frac{1}{2}\left[\dot{\phi}^{2}+\left(1+w_{m}\right) \rho_{m}\right] \\
\ddot{\phi}+3 H \dot{\phi} & =-d V / d \phi
\end{aligned}
$$

$$
\begin{aligned}
x & =\frac{\dot{\phi}}{H} \\
y & =\frac{\sqrt{V}}{H} \\
\lambda & =-\frac{1}{V} d V / d \phi
\end{aligned}
$$

dynamical systems - quintessence

$$
\begin{aligned}
d x / d N & =f_{1}(x, y, \lambda) \\
d y / d N & =f_{2}(x, y, \lambda) \\
d \lambda / d N & =f_{3}(x, y, \lambda)
\end{aligned}
$$

where $N=\ln (a)$.

the field equations

$$
\begin{aligned}
3 H^{2} & =G f_{G}-f-24 H^{3} \dot{f_{G}}+\rho_{r}+\rho_{m}, \\
-2 \dot{H} & =-8 H^{3} \dot{f_{G}}+16 H \dot{H} \dot{f_{G}}+8 H^{2} \ddot{f_{G}}+\left(\rho_{r}+p_{r}\right)+\rho_{m}, \\
\dot{\rho_{r}}+4 H \rho_{r} & =0, \\
\dot{\rho_{m}}+3 H \rho_{m} & =0 .
\end{aligned}
$$

dynamical system variables

$$
\begin{aligned}
x_{1} & =\frac{G f_{G}}{3 H^{2}}, \\
x_{2} & =-\frac{f}{3 H^{2}}, \\
x_{3} & =-8 H \dot{f}_{G}, \\
x_{4} & =\Omega_{r}=\frac{\rho_{r}}{3 H^{2}}, \\
x_{5} & =\frac{G}{24 H^{4}}=\frac{\dot{H}}{H^{2}}+1 .
\end{aligned}
$$

dynamical system variables

$$
\begin{aligned}
x_{1} & =\frac{G f_{G}}{3 H^{2}} \\
x_{2} & =-\frac{f}{3 H^{2}} \\
x_{3} & =-8 H \dot{f_{G}} \\
x_{4} & =\Omega_{r}=\frac{\rho_{r}}{3 H^{2}} \\
x_{5} & =\frac{G}{24 H^{4}}=\frac{\dot{H}}{H^{2}}+1 .
\end{aligned}
$$

N.B. we may express G and H in terms of x_{2} and x_{5}, so x_{1} is not an independent variable. The Friedman equation is now

$$
\Omega_{m}=1-x_{1}-x_{2}-x_{3}-x_{4}
$$

dynamical system variables

$$
\begin{aligned}
& \frac{d x_{1}}{d N}=-\frac{x_{3} x_{5}}{m}-x_{3} x_{5}-2 x_{1} x_{5}+2 x_{1} \\
& \frac{d x_{2}}{d N}=\frac{x_{3} x_{5}}{m}-2 x_{2} x_{5}+2 x_{2} \\
& \frac{d x_{3}}{d N}=-x_{3}+2 x_{5}-x_{3} x_{5}+1-3 x_{1}-3 x_{2}+x_{4} \\
& \frac{d x_{4}}{d N}=-2 x_{4}-2 x_{4} x_{5} \\
& \frac{d x_{5}}{d N}=-\frac{x_{3} x_{5}^{2}}{x_{1} m}-4 x_{5}^{2}+4 x_{5}
\end{aligned}
$$

and introduce

$$
r \equiv-\frac{G f_{G}}{f}=\frac{x_{1}}{x_{2}}, \quad m \equiv \frac{G f_{G G}}{f_{G}}
$$

dynamical system variables

This is now an autonomous system, once $f(G)$ is given.

$$
f(G) \Rightarrow G\left(r=\frac{x_{1}}{x_{2}}\right) \Rightarrow m\left(\frac{x_{1}}{x_{2}}\right)
$$

swap $f(G)$ for $m(r)$.

$$
m(r) \longrightarrow f(G)
$$

dynamical system equilibrium manifolds

critical points and critical lines

$$
\frac{d x}{d t}=x y, \quad \frac{d y}{d t}=x
$$

has a critical line at $x=0$, and bifurcates without any parameters.
stability : $\left\{\begin{array}{c}\text { stable for } x<0 \\ \text { unstable for } x<0\end{array}\right.$

our dynamical system

- $L_{1}:(1-\lambda, \lambda, 0,0,1)$.
$\Omega_{m}=0, \Omega_{r}=0, \Omega_{D E}=1, w_{D E}=-1, w_{\text {eff }}=-1$.

our dynamical system

- $L_{1}:(1-\lambda, \lambda, 0,0,1)$. $\Omega_{m}=0, \Omega_{r}=0, \Omega_{D E}=1, w_{D E}=-1, w_{\text {eff }}=-1$.
- $L_{2}:\left(\frac{1}{6} \lambda,-\frac{1}{3} \lambda, \lambda, 0,-\frac{1}{2}\right), m=-\frac{1}{2}$.
$\Omega_{m}=1-\frac{5}{6} \lambda, \Omega_{r}=0, \Omega_{D E}=\frac{5}{6} \lambda, w_{D E}=0, w_{\text {eff }}=0$.

our dynamical system

- $L_{1}:(1-\lambda, \lambda, 0,0,1)$. $\Omega_{m}=0, \Omega_{r}=0, \Omega_{D E}=1, w_{D E}=-1, w_{\text {eff }}=-1$.
- $L_{2}:\left(\frac{1}{6} \lambda,-\frac{1}{3} \lambda, \lambda, 0,-\frac{1}{2}\right), m=-\frac{1}{2}$. $\Omega_{m}=1-\frac{5}{6} \lambda, \Omega_{r}=0, \Omega_{D E}=\frac{5}{6} \lambda, w_{D E}=0, w_{\text {eff }}=0$.
- $L_{3}:\left(\frac{\lambda}{\lambda-2},-\frac{2 \lambda}{\lambda-2}, \frac{2 \lambda-2}{\lambda-2}, 0, \lambda\right), m=-\frac{1}{2}$.
$\Omega_{m}=\Omega_{r}=0, \Omega_{D E}=1, w_{D E}=-\frac{2}{3} \lambda-\frac{1}{3}, w_{\text {eff }}=-\frac{2}{3} \lambda-\frac{1}{3}$.

our dynamical system

- $L_{1}:(1-\lambda, \lambda, 0,0,1)$. $\Omega_{m}=0, \Omega_{r}=0, \Omega_{D E}=1, w_{D E}=-1, w_{\text {eff }}=-1$.
- $L_{2}:\left(\frac{1}{6} \lambda,-\frac{1}{3} \lambda, \lambda, 0,-\frac{1}{2}\right), m=-\frac{1}{2}$. $\Omega_{m}=1-\frac{5}{6} \lambda, \Omega_{r}=0, \Omega_{D E}=\frac{5}{6} \lambda, w_{D E}=0, w_{\text {eff }}=0$.
- $L_{3}:\left(\frac{\lambda}{\lambda-2},-\frac{2 \lambda}{\lambda-2}, \frac{2 \lambda-2}{\lambda-2}, 0, \lambda\right), m=-\frac{1}{2}$.
$\Omega_{m}=\Omega_{r}=0, \Omega_{D E}=1, w_{D E}=-\frac{2}{3} \lambda-\frac{1}{3}, w_{\text {eff }}=-\frac{2}{3} \lambda-\frac{1}{3}$.
- $L_{4}:\left(\frac{1}{4} \lambda,-\frac{1}{2} \lambda, \lambda, 1-\frac{3}{4} \lambda,-1\right), m=-\frac{1}{2}$.
$\Omega_{m}=0, \Omega_{r}=1-\frac{3}{4} \lambda, \Omega_{D E}=\frac{3}{4} \lambda, w_{D E}=\frac{1}{3}, w_{\text {eff }}=\frac{1}{3}$.

our dynamical system

line	property	remarks
L1	deSitter	
L2	matter scaling	$m=-\frac{1}{2}, r=-\frac{1}{2}$
L3	dark energy dominated	$m=-\frac{1}{2}, r=-\frac{1}{2}$
L4	radiation scaling	$m=-\frac{1}{2}, r=-\frac{1}{2}$

our dynamical system

$$
\begin{aligned}
r & \equiv-\frac{G f_{G}}{f} \\
& =\frac{x_{1}}{x_{2}}, \\
m & \equiv \frac{G G_{G G}}{f_{G}}
\end{aligned}
$$

we also have

$$
\frac{d r}{d N}=r(m+r+1) \frac{\dot{G}}{H G}
$$

our dynamical system

line	property	remarks
L1	deSitter	
L2	matter scaling	$m=-\frac{1}{2}, r=-\frac{1}{2}$
L3	dark energy dominated	$m=-\frac{1}{2}, r=-\frac{1}{2}$
L4	radiation scaling	$m=-\frac{1}{2}, r=-\frac{1}{2}$

look for solutions of the form

$$
L 4 \longrightarrow L 2 \longrightarrow L 1
$$

recall: $r \equiv-\frac{G f_{G}}{f}=\frac{x_{1}}{x_{2}}, \quad m \equiv \frac{G f_{G G}}{f_{G}}$.

an example

$$
f(G)=\alpha\left(G^{p}-\beta\right)^{q}
$$

- matter point exists $\Rightarrow 2 p q=1$.
- matter point unstable $\Rightarrow q>0$.
consider $f(G)=\alpha\left(G^{3 / 4}-\beta\right)^{2 / 3}$

Summary

- $f(G)$ models provide a rich arena for studying cosmological models
- $f(G)$ may be usefully cast as a dynamical system

the field equations

$$
\begin{aligned}
3 H^{2} & =G f_{G}-f-24 H^{3} \dot{f_{G}}+\rho_{r}+\rho_{m}, \\
-2 \dot{H} & =-8 H^{3} \dot{f_{G}}+16 H \dot{H} \dot{f_{G}}+8 H^{2} \ddot{f_{G}}+\left(\rho_{r}+p_{r}\right)+\rho_{m}, \\
\dot{\rho_{r}}+4 H \rho_{r} & =0 \\
\dot{\rho_{m}}+3 H \rho_{m} & =0
\end{aligned}
$$

the field equations

$$
\begin{aligned}
3 H^{2} & =G f_{G}-f-24 H^{3} \dot{f_{G}}+\rho_{r}+\rho_{m}, \\
-2 \dot{H} & =-8 H^{3} \dot{f_{G}}+16 H \dot{H} \dot{f_{G}}+8 H^{2} \ddot{f_{G}}+\left(\rho_{r}+p_{r}\right)+\rho_{m}, \\
\dot{\rho_{r}}+4 H \rho_{r} & =0 \\
\dot{\rho_{m}}+3 H \rho_{m} & =0
\end{aligned}
$$

using $3 H^{2}=\rho,-2 \dot{H}=\rho+p$ we define

$$
\begin{aligned}
\rho_{D E} & =G f_{G}-f-24 H^{3} \dot{f_{G}} \\
p_{D E} & =16 H^{3} \dot{f_{G}}+16 H \dot{H} \dot{f_{G}}+8 H^{2} \ddot{f_{G}}-G f_{G}+f
\end{aligned}
$$

the field equations

$$
\begin{aligned}
3 H^{2} & =G f_{G}-f-24 H^{3} \dot{f_{G}}+\rho_{r}+\rho_{m}, \\
-2 \dot{H} & =-8 H^{3} \dot{f_{G}}+16 H \dot{H} \dot{f_{G}}+8 H^{2} \ddot{f_{G}}+\left(\rho_{r}+p_{r}\right)+\rho_{m}, \\
\dot{\rho_{r}}+4 H \rho_{r} & =0 \\
\dot{\rho_{m}}+3 H \rho_{m} & =0
\end{aligned}
$$

using $3 H^{2}=\rho,-2 \dot{H}=\rho+p$ we define

$$
\begin{aligned}
\rho_{D E}= & G f_{G}-f-24 H^{3} \dot{f_{G}} \\
p_{D E}= & 16 H^{3} \dot{f_{G}}+16 H \dot{H} \dot{f_{G}}+8 H^{2} \ddot{f_{G}}-G f_{G}+f . \\
& \quad \dot{\rho} \dot{D E}+3 H \rho_{D E}=0
\end{aligned}
$$

dynamical system equilibrium manifolds

critical points and critical lines

