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Trace Anomaly

If a classical action is invariant under a conformal transformation of the
metric, then:

Tµ
µ = 0 .

However, after quantisation and renormalisation one finds:

〈T̂µ
µ〉 6= 0 .

Einstein Field Equations:

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν .
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Trace Anomaly

Examples:

Massless, conformally coupled (ξ = 1/6) scalar field

S =

∫
d4x
√
−g

{
−1

2
gµν∂µφ∂νφ−

ξ

2
Rφ2

}

Massless spin-1/2 field

Photon
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Trace Anomaly

The trace anomaly or the conformal anomaly in four dimensions is given
by:

TQ ≡
〈
T̂µ

µ

〉
= bF + b′

(
E − 2

3
�R

)
+ b′′�R ,

where

E ≡ ∗Rµνκλ
∗Rµνκλ = RµνκλR

µνκλ − 4RµνR
µν + R2

F ≡ CµνκλC
µνκλ = RµνκλR

µνκλ − 2RµνR
µν +

1

3
R2 ,

where b′′ is not fixed uniquely by the trace anomaly and where:

b =
1

120(4π)2
(NS + 6NF + 12NV )

b′ = − 1

360(4π)2

(
NS +

11

2
NF + 62NV

)
.
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Trace Anomaly

In (homogenous and isotropic) FLRW spacetimes:

gαβ = diag
(
−1, a2(t), a2(t), a2(t)

)
, H =

ȧ

a
.

Hence:

TQ = 4b′
{...

H + 7ḦH + 4Ḣ2 + 18ḢH2 + 6H4
}

−6b′′
{...

H + 7ḦH + 4Ḣ2 + 12ḢH2
}
,

or, motivated by Ostrogradsky’s theorem:

TQ = 24b′
{

3ḢH2 + H4
}
− 72b′′ḢH2 ,

which corresponds to truncating at first order in time derivatives, also
known as quasi de Sitter spacetime. Note this is exact when b′′ = 2b′/3.
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Connecting the Trace Anomaly and Cosmological Constant

Various people (Mottola, Antoniadis, Mazur, Tomboulis,...) stated that
the trace anomaly could have effects on dark energy and the cosmological
constant (see e.g.: gr-qc/0612068).

They argue in favour of a new, IR degree of freedom of gravity:

gµν(x) = e2σ(x)gµν(x) .

The trace anomaly cannot be generated from a local finite term in
the action, but rather stems from a non-local effective action that
generates the conformal anomaly by variation with respect to the
metric.

This genuine non-locality of the action generating the trace anomaly
reveals a large distance effect of quantum physics. It is then argued
that the new conformal field should dynamically screen the
cosmological constant, thus solving the cosmological constant
problem.
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Connecting the Trace Anomaly and Cosmological Constant

We argue for a semiclassical approach to examining the connection
between the cosmological constant and the trace anomaly:

Dynamical backreaction should be studied in more general spacetimes
than de Sitter spacetime as de Sitter spacetime is not dynamical, i.e.:

In de Sitter spacetime: H = const
In FLRW spacetimes: H = H(t)

In the semiclassical spirit, we take expectation values of
inhomogeneous quantum fluctuations with respect to a certain state
to study its effect on the background spacetime. Therefore, quantum
fluctuations affect the background homogeneously.
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Dynamics Driven by the Trace Anomaly

We consider a universe consisting of (classical) matter with arbitrary
equation of state ω = PM/ρM, a cosmological constant and the trace
anomaly

We use covariant stress-energy conservation

We assume a perfect fluid form for the quantum density and pressure
yielding the trace anomaly:

Tµ
ν,Q = (−ρQ, pQ, pQ, pQ) .
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Dynamics Driven by the Trace Anomaly

Relevant equation governing the dynamics driven by the trace anomaly is:

9(1 + ω)H2(t) + 6Ḣ(t)− 3(1 + ω)Λ = −8πG [TQ + (1− 3ω)ρQ] .

Here, we use either the full or the truncated expression for the quantum
trace and the quantum density:

TQ = 4b′
{...

H + 7ḦH + 4Ḣ2 + 18ḢH2 + 6H4
}

−6b′′
{...

H + 7ḦH + 4Ḣ2 + 12ḢH2
}
,

and:

ρQ = 2b′
[
−2ḦH + Ḣ2 − 6ḢH2 − 3H4

]
+3b′′

[
2ḦH − Ḣ2 + 6ḢH2

]
.
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9(1 + ω)H2(t) + 6Ḣ(t)− 3(1 + ω)Λ = −8πG [TQ + (1− 3ω)ρQ] .

Here, we use either the full or the truncated expression for the quantum
trace and the quantum density:

TQ = 4b′
{...
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Dynamics Driven by the Trace Anomaly

We can easily solve for the asymptotic behaviour:

HC
0 =

√
Λ

3

[
1− 8πb′λ

]
HA

0 =

√
−1

16πG b′
− Λ

3
,

where λ = GΛ
3 . Note that this asymptotic behaviour does not depend on

whether one studies the trace anomaly in quasi de Sitter or in FLRW
spacetimes.
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Dynamics in Quasi de Sitter Spacetime

Because the Einstein Field equations yield a first order differential
equation for H(t), we can analytically derive a solution for the Hubble
parameter.

Moreover, by linearising around the quantum anomaly driven
attractor:

δ(t) =
H(t)− HA

0

HA
0

,

one finds a region in parameter space where this attractor becomes
unstable.

J.F. Koksma (ITP, UU) The Trace Anomaly July 2, 2009 13 / 19



Introduction Screening the Cosmological Constant Dynamics Driven by the Trace Anomaly Conclusion

Dynamics in Quasi de Sitter Spacetime

Because the Einstein Field equations yield a first order differential
equation for H(t), we can analytically derive a solution for the Hubble
parameter.

Moreover, by linearising around the quantum anomaly driven
attractor:

δ(t) =
H(t)− HA

0

HA
0

,

one finds a region in parameter space where this attractor becomes
unstable.

J.F. Koksma (ITP, UU) The Trace Anomaly July 2, 2009 13 / 19



Introduction Screening the Cosmological Constant Dynamics Driven by the Trace Anomaly Conclusion

Dynamics in Quasi de Sitter Spacetime

1 2 3 4
t L � 3

2

4

6

8

10

H 3 � L

0.05 0.10 0.15 0.20 0.25
t L � 3

5

10

15

H 3 � L

Adding the trace anomaly does not change the effective value of the
cosmological constant in quasi de Sitter spacetime.
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Dynamics in FLRW Spacetimes

One has to rely on numerical methods due to the higher derivative
contributions.

One can again linearise the Einstein Field equations around HA
0 and

HC
0 and derive a stability condition on the attractors:

If b′′ − 2b′/3 > 0, then
{

Classical attractor unstable
Quantum attractor stable

If b′′ − 2b′/3 < 0, then
{

Classical attractor stable
Quantum attractor unstable

Note that when b′′ − 2b′/3 = 0, we return to the quasi de Sitter
spacetime analysis performed before.
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Dynamics in FLRW Spacetimes

1 2 3 4 5
t L � 3

-2

2

4

6

8

10

H 3 � L

0 1 2 3 4 5
t L � 3

2

4

6

8

10

H 3 � L

If the classical de Sitter attractor is stable, adding the trace anomaly does
not change its effective value in FLRW spacetimes.
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Dynamics in FLRW Spacetimes

Oscillatory behaviour occurs whenever the eigenvalues of the small
perturbations around the two attractors develop an imaginary contribution.
We find:

Whenever the classical attractor is stable, oscillations occur

When the quantum anomaly driven attractor is stable, oscillations
occur when:

b′′ < −2

9
b′
(

1 + 8πλb′

1 + 8πλ

)
.
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Dynamics in FLRW Spacetimes

b' > 0

unstable quantum attractor

oscillations

no oscillations

-1.0 -0.8 -0.6 -0.4 -0.2 0.2 0.4
b'

-0.6

-0.4

-0.2

0.2

b''
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Conclusion

We have studied the dynamics of the Hubble parameter both in quasi
de Sitter and in FLRW spacetimes including matter, a cosmological
term and the trace anomaly.

There is no dynamical effect that influences the effective value of the
cosmological constant, i.e.: the classical de Sitter attractor.

Based on our semiclassical analysis we thus conclude that the trace
anomaly does not solve the cosmological constant problem.
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The Einstein-Hilbert action reads:

S = SEH + SM =
1

16πG

∫
d4x
√
−g (R − 2Λ) +

∫
d4x
√
−gLM ,

where:

LM = −1

2
∂αφ(x)∂βφ(x)gαβ − 1

2
m2φ2(x)− V (φ(x)) .

The Einstein Field Equations follow as usual:

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν .
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Dynamics Driven by the Trace Anomaly

Quantum contribution to the stress-energy tensor is:

Tµν = − 2√
−g

δ

δgµν
Γ[φcl] = − 2√

−g

δ

δgµν
(SM[φcl] + ΓQ[φcl])

≡ TC
µν + TQ

µν .

The Bianchi identity implies stress-energy conservation:

∇µTµν = 0 .

Classically, we have ∇µTC
µν = 0, hence we derive:

∇µTQ
µν = 0 .
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Dynamics Driven by the Trace Anomaly

When writing:
Tµ

ν,Q = (−ρQ, pQ, pQ, pQ) ,

we derive from stress-energy conservation for the quantum contributions:

ρQ = 2b′
[
−2ḦH + Ḣ2 − 6ḢH2 − 3H4

]
+3b′′

[
2ḦH − Ḣ2 + 6ḢH2

]
.

Or, truncated at order ε = − Ḣ
H2 :

ρQ = −6b′
[
2ḢH2 + H4

]
+ 18b′′ḢH2 .
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]
.

Or, truncated at order ε = − Ḣ
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J.F. Koksma (ITP, UU) The Trace Anomaly July 2, 2009 22 / 19



Introduction Screening the Cosmological Constant Dynamics Driven by the Trace Anomaly Conclusion

Dynamics Driven by the Trace Anomaly

Taking the trace of the Einstein Field equations yields:

R − 4Λ = −8πG (TC + TQ) ,

where:
TM = −ρM + 3pM = ρM (3ω − 1) .

We use the (00) Einstein equation to eliminate ρM:

R00 −
1

2
Rg00 + Λg00 = 8πG (ρM + ρQ) .
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Phase space structure in quasi de Sitter spacetime
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