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Introduction

Model

construction m Unified models of these components represent an

Linear interesting explanation for the current acceleration of the

Perturbations Universe.

; m Dark matter and dark energy are not detected directly,
their nature is still under investigation.

m The problem would be simplified if they were two
manifestations of the same fluid.
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m Attempting to connect Particle Physics and Cosmology,

m scalar field is a good candidate for unified dark energy
models.

m Fixing some degrees of freedom, one obtains an
expansionary cosmology with:

m a dark matter dominated background at early times
m and dark energy dominating late stages.
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It has been suggested that

Cosmic Inflation can be explained with Brane theory.

In this context, we propose to describe the current acceleration
with a Dirac-Born-Infeld action siverstein and Tong,(2004):

S:—/d4xa(t)3 (f( ) (\/1—f(¢>) )+v(¢))

characterized by two functions:
m Warp factor, 1 (¢) > 0.
m Inflation potential, V (¢).
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We consider a spatially flat FRW spacetime filled with a
non-canonical DBI-field.

Perfect fluid interpretation:

_a-1 _ -t
P=F TV, P V@)

with v = - ¢/

Brane proper velocity

We explore the case f (¢) = fo and V (¢) = V.

m Purely kinetic model for the joint description of dark
matter and dark energy
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The background happens to mimick that induced by the joint

Conclusions

contribution of a Chaplygin gas and a cosmological constant.

Novelty: behavior realized with a single fluid!
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m Coupled equations.
m Mode dependent evolution.
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m Low energy modes (k2/H <1): 0r~ 622, s~ 15
E

m High energy modes (k/ > 1):
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= BAO.

Observational

constraints

e Friedman equation
/ ~ Qp high energy regime
Conclusions Hj = QZ —'— 92(1 + 2)6 + Q/\ + Q (1 + Z) / . e

foVo—1
_ A% _
with Q¢ = s = B2l Q= £8 and Q)= 5.



Observational constraints

Results

DBI del .
moces m We set constraints on Q¢ and Q..

Irene Sendra
UPV-EHU

Observational

constraints

Model

10/15



Observational constraints

Results

DBI models

m We set constraints on Q¢ and Q..
hﬁr\fé;ﬁa u PriOI’ on Qb from WMAP—5yeaI’, Komatsu et al. (2008).

Observational

constraints

10/15



Observational constraints

Results

DBI models

m We set constraints on Q¢ and Q..
e m Prior on Qj from WMAP-5year, komatsu et al. (2008).

Observational

constraints

10/15



DBI models

Irene Sendra
UPV-EHU

ruction

Linear
Perturb

Observational

constraints

Model

kinematics

Observational constraints

Results

m We set constraints on Q¢ and Q..
m Prior on Q5 from WMAP-5year, komatsu et al. (2008).

08

06

0.4

02

0.0t L L i L L L
20 022 024 02 028 030 03
ac

Contour plot with ESSENCE sample. Best values:

_ +0.013 _ +0.177
Qc = 0.2577 577 and Qf = 0.2027 5,



DBI models

m We set constraints on Q¢ and Q..

Irene Sendra .
v m Prior on Q5 from WMAP-5year, komatsu et al. (2008).
Lo - - - - - - LoE - - - - - -
P
08 0.8
06 0.6
o o
0.4 0.4
Observational 02 02|
constraints
0.0}, L L L L L L 0.0, L L L L L L
20 0.22 0.24 0.26 0.28 0.30 0.3 20 0.22 0.24 0.26 0.28 0.30 0.3:
a o
Contour plot with ESSENCE sample. Best values: Contour plot with UNION sample. Best values:
— +0.013 _ +0.177 _ +0.012 _ +0.171
Qc = 0.257+%%3 and 7 = 0.202+% 177 Qc = 0.2567%,%2 and 7 = 0.1607% 1

10/15



Observational constraints

Results

aplygin gas cases
Bento,Bertolami and Sen (2002
Kamenshchik(2001)

2008).

DBI models

m We set constraints on Q¢ and Q..
R m Prior on Q4 from WMAP-5

, Komatsu et al.

Lo T ——— T T T 1ofT T Y T T T T
P
08 0.8
06 0.6
o o
0.4 0.4
Observational 02 02|
constraints
0o, , : : . . . 0oL, . n . . . .
20 0.22 0.24 0.26 0.28 0.30 0.3 20 0.22 0.24 0.26 0.28 0.30 0.3:
2 o
Contour plot with ESSENCE sample. Best values: Contour plot with UNION sample. Best values:
— +0.013 _ +0.177 — +0.012 _ +0.171
Qc = 0.2577 77 and Qf = 0.2027 5y, Qc = 0.256" 1y and Q7 = 0.1607 ;" '¢g



Observational constraints

Results

aplygin gas cases
Bento,Bertolami and Sen (2002
Kamenshchik(2001)

2008).

DBI models

m We set constraints on Q¢ and Q..
R m Prior on Q4 from WMAP-5

, Komatsu et al.

Lo T ——— T T T 1ofT T Y T T T T
P
08 0.8
06 0.6
o o
0.4 0.4
Observational 02 02|
constraints
0o, , : : . . . 0oL, . n . . . .
20 0.22 0.24 0.26 0.28 0.30 0.3 20 0.22 0.24 0.26 0.28 0.30 0.3:
2 o
Contour plot with ESSENCE sample. Best values: Contour plot with UNION sample. Best values:
— +0.013 _ +0.177 — +0.012 _ +0.171
Qc = 0.2577 77 and Qf = 0.2027 5y, Qc = 0.256" 1y and Q7 = 0.1607 ;" '¢g

m LCDM is not significantly excluded.



Observational constraints

Results

aplygin gas cases
Bento,Bertolami and Sen (2002
Kamenshchik(2001)

2008).

DBI models

m We set constraints on Q¢ and Q..
R m Prior on Q4 from WMAP-5

, Komatsu et al.

10 - 10FT T w T T T T
|
08 0.8
06 0.6
o o
0.4 0.4]
Observational 02 02|
constraints
0o, , : : . . . 0oL, . . .
20 0.22 0.24 0.26 0.28 0.30 0.3 20 0.22 0.24 0.26 0.28 0.30 0.3:
2 o
Contour plot with ESSENCE sample. Best values: Contour plot with UNION sample. Best values:
_ +0.013 _ +0.177 _ +0.012 _ +0.171
Qc = 0.2577 77 and Qf = 0.2027 5y, Qc = 0.256" 1y and Q7 = 0.1607 ;" '¢g

m LCDM is not significantly excluded.

m Our model provides better fits.
10/15



Observational constraints

Results

DBl models m Arbitrariness in the choice of priors for Q. and Qf

Irene Sendra compensated with:
UPV-EHU

Invi

Linear
Perturbations

Observational
constraints

11/15



Observational constraints

Results

DBl models m Arbitrariness in the choice of priors for Q. and Q¢

Irene Sendra compensated with:
UPV-EHU .
m Study of the preferred regions.

Introduction

Model

construction

Linear
Perturbations

Observational

constraints

Model

11/15



Observational constraints

Results

DBl models m Arbitrariness in the choice of priors for Q. and Q¢

Irene Sendra compensated with:
UPV-EHU .
m Study of the preferred regions.

Introduction

Model

construction

Linear
Perturbations

Observational

constraints

Model

11/15



Observational constraints

Results

DBl models m Arbitrariness in the choice of priors for Q. and Qf
Irene Sendra compensated W|th
UPV-EHU a

m Study of the preferred regions.

Invi

Linear
Perturbations

Observational
constraints

3D representation of Bayesian evidences for the

ESSENCE sample.



Observational constraints

Results

DBI models

m Arbitrariness in the choice of priors for . and Qf
Vreige Semile compensated with:
m Study of the preferred regions.

UPV-EHU

Observational

constraints

3D representation of Bayesian evidences for the 3D representation of Bayesian evidences for the

ESSENCE sample. UNION sample.

11/15



Observational constraints

Results

DBI models

m Arbitrariness in the choice of priors for . and Qf
Vreige Semile compensated with:
m Study of the preferred regions.

UPV-EHU

Observational

constraints

3D representation of Bayesian evidences for the 3D representation of Bayesian evidences for the

ESSENCE sample. UNION sample.

m The region Qf € [0.00,0.25], Q. € [0.24,0.26] gives the
best constraints for the parameters.
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|
2dinH .
W(Z) = —‘P i (=0

1-(%Y a2

-1.00

-1.05

w -1.10

-1.15

Model -1.20
kinematics -1.25

1.0 ! .| 0.0 0.5 1.0 15 2.0
ESSENCE dataset. UNION dataset.
m The current observational data restricts it: w(z) < —1,
. dw(z)
with ==, > 0.
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kinematics z z
Gefr (z) with ESSENCE sample. Gefr (z) with UNION sample.

m Strong evidence of deceleration-acceleration transition

Il . .. :
27OW, infer transition redshift.
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