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Attempting to connect Particle Physics and Cosmology,

scalar field is a good candidate for unified dark energy
models.
Fixing some degrees of freedom, one obtains an
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a dark matter dominated background at early times
and dark energy dominating late stages.
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It has been suggested that

Cosmic Inflation can be explained with Brane theory.

In this context, we propose to describe the current acceleration
with a Dirac-Born-Infeld action Silverstein and Tong,(2004):

S = −
∫

d4xa (t)3

(
f (φ)−1

(√
1− f (φ) φ̇2 − 1

)
+ V (φ)

)
characterized by two functions:

Warp factor, f (φ) > 0.

Inflation potential, V (φ).
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Model construction

We consider a spatially flat FRW spacetime filled with a
non-canonical DBI-field.

Perfect fluid interpretation:

ρ =
γ − 1

f (φ)
+ V (φ) , p =

γ − 1

γf (φ)
− V (φ)

with γ = 1√
1−f (φ)φ̇2

. Brane proper velocity�
������

We explore the case f (φ) = f0 and V (φ) = V0.

Purely kinetic model for the joint description of dark
matter and dark energy

φ (a) −→ p (a) , ρ (a).
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Model construction

From the conservation eq. we obtain: γ2 = 1 + c2f0
(

a0
a

)6
,

which leads to an

Unification model of dark matter and dark energy.

Interpolates between a dust and a de Sitter model
(with V0 as cosmological constant):

a� a0: ρ = γ−1
f0

+ V0 ∼ V0.

a� a0: ρ ∼ 1
a3 .

The background happens to mimick that induced by the joint
contribution of a Chaplygin gas and a cosmological constant.

Novelty: behavior realized with a single fluid!
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Linear Perturbations

In synchronous gauge

δ′ = −(1 + w)
(
θ + h′

2

)
− 3H(c2

s − w)δ θ′ = −H(1− 3c2
s )θ +

c2
s

1+w
k2δ

Ma and Berstschinger, (1995).

Early Times:(w ≈ 0,θ̇ = θ = 0 and a ∼ t2/3) ⇒ δ = c1t−1 + c2t2/3

Growth compatible with the primordial universe, which
would seed the formation of structures.

Late times:

Coupled equations.
Mode dependent evolution.

Low energy modes
(

k2/H � 1
)
: θ ≈ θ0a2, δ ≈ δ1

a4 +
δ2
a10 +

θ1
a5 .

High energy modes
(

k2/H � 1
)
:

Perturbation decreases asymptotically: limt→+∞ δ ≈ 0,
becomes negligible as Universe becomes dominated by
vacuum energy.
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Late times:

Coupled equations.
Mode dependent evolution.

Low energy modes
(

k2/H � 1
)
: θ ≈ θ0a2, δ ≈ δ1

a4 +
δ2
a10 +

θ1
a5 .

High energy modes
(

k2/H � 1
)
:

Perturbation decreases asymptotically: limt→+∞ δ ≈ 0,
becomes negligible as Universe becomes dominated by
vacuum energy.
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Observational constraints
Results

We set constraints on Ωf and Ωc .

Prior on Ωb from WMAP-5year, Komatsu et al. (2008).
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LCDM is not significantly excluded.

Our model provides better fits.
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Observational constraints
Results

Arbitrariness in the choice of priors for Ωc and Ωf

compensated with:

Study of the preferred regions.
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The region Ωf ∈ [0.00, 0.25], Ωc ∈ [0.24, 0.26] gives the
best constraints for the parameters.
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Model kinematics
Effective equation of state parameter

Redshift dependence of the effective equation of state
parameter.

w(z) =
2
3

d ln H
dz (1+z)−1

1−( H0
H )

2
Ωc (1+z)3
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The current observational data restricts it: w(z) ≤ −1,

with dw(z)
dz |z=0 > 0.
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Model kinematics
Transition redshift

From the explicit equation for q(z)
we compute−−−−−−−→ q(zt) = 0

to obtain−−−−−→ zt .

ESSENCE dataset: zt = 0.766+0.041
−0.047.

UNION dataset: zt = 0.778+0.036
−0.048.

In the literature parameterizations for q(z) appear:

Riess et al. 2004: q(z) = q0 + z dq
dz

∣∣∣
z=0

Xu et al. 2007, Cunha et al. 2008: q(z) = q0 + q1
z

1+z

Our procedure indicates:

the acceleration-deceleration transition happens before
than the other definitions allow to estimate.

Approximations are not good for accounting the tendency
of our DBI fluid to induce a phantom stage.
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Conclusions

This model is a worthy alternative to the popular unification
models.

Has some attractive features:

based on a purely kinetic DBI-action: extends DBI models
to late universe.
is better suited to observations than the Chaplygin gas.
present a phantom behavior without and explicit
component in the model.
in the future can be explored to its generalization.
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