The Unifying Dark Fluid Model

Alexandre Arbey

Centre de Recherche Astrophysique de Lyon

Invisible Universe - Paris

July 2nd, 2009

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Dark Matter Dark Energy Dark Fluids?

Dark Matter Problem

Different scales involved

- Galactic scale
 - Galaxy Rotation Curves
 - Galaxy Collisions
- Cluster Scale
 - X-Ray Observations
 - Weak Lensing
 - Bullet Cluster
- Cosmological Scale
 - Supernovæ of type la
 - Cosmic Microwave Background
 - ...

< ロ > < 団 > < 豆 > < 豆 >

Dark Matter Dark Energy Dark Fluids?

Dark Matter Candidates

- Baryonic Dark Matter
- WIMPs
- Other particles/fields: axions, Kaluza-Klein particles, ... Exotic and non-baryonic particles
- Modified Gravitation Laws MOND, TeVeS, Scalar-tensor theories, Extra-dimensions, Brane worlds, ...

・ロ・ ・ 四・ ・ 回・ ・ 日・

3

Dark Matter Dark Energy Dark Fluids?

Dark Energy Problem

72% of the Universe energy has a negative pressure!

- Cosmological Constant A new physics constant...
- Vacuum Energy

Applying Quantum Field Theory to Dark Energy? Not very Successful yet...

Quintessence

Dark energy as a real scalar field?

• ...

(日)

Dark Matter Dark Energy Dark Fluids?

Quintessence

Quintessence = real homogeneous scalar field

- Lagrangian density: $\mathcal{L} = g^{\mu\nu}\partial_{\mu}\varphi\partial_{\nu}\varphi V(\varphi)$
- Density and pressure: {

$$\begin{aligned} \rho_{\varphi} &= \frac{1}{2} \dot{\varphi}^2 + V(\varphi) \\ P_{\varphi} &= \frac{1}{2} \dot{\varphi}^2 - V(\varphi) \end{aligned}$$

• Friedmann equations:
$$\begin{cases} \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\sum \rho - \frac{k}{a^2}\\ \frac{\ddot{a}}{a} = -\frac{3\pi G}{3}(\sum \rho + 3\sum P)\end{cases}$$

• Klein-Gordon equation: $\ddot{\varphi} + 3H\dot{\varphi} + \frac{\partial V}{\partial \varphi} = 0$

• Usual potentials:
$$V(\varphi) = \alpha \varphi^{-\beta}$$

• Usual potentials: $V(\varphi) = \alpha \exp(-\beta \varphi)$
 $V(\varphi) = \alpha [\cosh(\beta \varphi) - 1]'$

・ロン ・雪 > ・ 画 > ・

臣

Dark Matter Dark Energy Dark Fluids?

What if Dark Matter and Dark Energy are in interaction?

Alexandre Arbey Unifying Dark Fluid

・ロ・ ・ 四・ ・ 回・ ・ 日・

æ.

Dark Matter Dark Energy Dark Fluids?

What if they are different aspects of a same dark component?

Alexandre Arbey Unifying Dark Fluid

・ロ・ ・ 四・ ・ 回・ ・ 日・

æ.

Dark Matter Dark Energy Dark Fluids?

To answer these questions, we need to model the interactions

Alexandre Arbey Unifying Dark Fluid

æ.

Dark Matter Dark Energy Dark Fluids?

\Rightarrow Dark fluid:

One unique fluid to replace dark energy and dark matter

Alexandre Arbey Unifying Dark Fluid

・ロ・ ・ 四・ ・ 回・ ・ 日・

臣

Dark Matter Dark Energy Dark Fluids?

Dark Fluids?

Must satisfy the observational constraints

Today:

- Matter behaviour at local scales
- Repulsing behaviour at cosmological scales

In the Early Universe:

• Matter behaviour at all scales.

・ロト ・ 日 ・ ・ ヨ ・

Dark Matter Dark Energy Dark Fluids?

Dark Fluids?

Advantages

- One unique Dark Fluid instead of two...
- Model dark energy / dark matter interactions
- Can be made up of scalar field!

・ロ・ ・ 四・ ・ 回・ ・ 日・

크

Massive Complex Scalar Field

= 990

Massive and Complex Scalar Field

•
$$\mathcal{L} = \boldsymbol{g}^{\mu
u}\partial_{\mu}\phi^{*}\partial_{
u}\phi - \boldsymbol{V}(\phi)$$

•
$$V(\phi) = m^2 |\phi|^2$$

A. Arbey, J. Lesgourgues & P. Salati, Phys. Rev. D 64, 123528 - Phys. Rev. D 65, 083514 - Phys. Rev. D 68, 023511

Massive Complex Scalar Field

・ロ・ ・ 四・ ・ 回・ ・ 日・

臣

Galaxy Rotation Curves (1)

- Internal rotation: $\phi(\vec{x}, t) = \frac{\sigma(r)}{\sqrt{2}} e^{i\omega t}$
- Static and isotropic metric: $d\tau^2 = e^{2u}dt^2 - e^{2v} \left\{ dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta d\varphi^2 \right\}$
- Klein-Gordon equation: $e^{-2v} \left\{ \sigma'' + \left(u' + v' + \frac{2}{r} \right) \right\} + \omega^2 e^{-2u} \sigma - m^2 \sigma = 0$
- Einstein equations:

$$2v'' + v'^{2} + \frac{4v'}{r} = -8\pi G e^{2v} \left\{ e^{-2u\frac{\omega^{2}\sigma^{2}}{2}} + e^{-2v\frac{\sigma''}{2}} + \frac{m^{2}\sigma^{2}}{2} \right\}$$
$$u'' + v'' + u'^{2} + \frac{1}{r}(u' + v') = 8\pi G \left\{ e^{2v} \left[e^{-2u\frac{\omega^{2}\sigma^{2}}{2}} - e^{-2v\frac{\sigma''}{2}} - \frac{m^{2}\sigma^{2}}{2} \right] + \rho_{\text{baryon}} \right\}$$

Massive Complex Scalar Field

Galaxy Rotation Curves (2)

Resolution \rightarrow discrete number of solutions, *i.e.* fundamental and excited states

To ensure stability, we consider only the fundamental and less-energetic state, n=0

Newtonian limit: $\omega^2 \approx m^2 \rightarrow P \approx (\omega^2 - m^2)\sigma^2 \approx 0$ Rotation curves obtained with: $v^2(r) = r \frac{\partial}{\partial r} \Phi_{grav}(r) = rc^2 u'(r)$

Massive Complex Scalar Field

Galaxy Rotation Curves (3)

Universal Rotation Curves (Persic, Salucci & Stel) The favoured mass is around 10^{-23} eV! Confirmed by the study of the rotation curve of DDO 154

(日)

Massive Complex Scalar Field

Image: A matrix of the second seco

Cosmological Behaviour

Friedmann-Lemaître Universe with radiation and scalar field Internal rotation: $\phi(t) = \frac{\sigma(t)}{\sqrt{2}} e^{i\theta(t)}$ Friedmann equation: $3H^2 = 8\pi G(\rho_\gamma + \rho_\phi)$ with $\rho_\phi = \frac{1}{2} \left\{ \left(\frac{d\sigma}{dt}\right)^2 + \left(\frac{d\theta}{dt}\right)^2 \sigma^2 + m^2 \sigma^2 \right\}$ Klein-Gordon equation: $\begin{cases} \frac{d^2\sigma}{dt^2} + \frac{3}{a}\frac{da}{dt}\frac{d\sigma}{dt} + m^2\sigma - \left(\frac{d\theta}{dt}\right)^2 \sigma = 0\\ \frac{d^2\theta}{dt^2}\sigma + \frac{3}{a}\frac{da}{dt}\frac{d\theta}{dt}\sigma + 2\frac{d\theta}{dt}\frac{d\sigma}{dt} = 0 \end{cases}$

The field has an adequate matter behaviour since recombination!

Massive Complex Scalar Field

4 ∃ →

< □ > < 三

Collisions

C. Palenzuela, I. Olabarrieta, L. Lehner, S. Liebling, Phys. Rev. D75 (2007) 064005

Very complex systems, difficult to simulate!

Towards Unification Unifying Scalar Field

Towards Unification

$$ho^{cosmo}(t_0) pprox 9 imes 10^{-29} ext{ g.cm}^{-3}$$

 $ho^{Milky Way}(ec{r}_{\odot}, t_0) pprox 5 imes 10^{-24} ext{ g.cm}^{-3}$ $\Big\} \Rightarrow
ho^{galaxy} \gg
ho^{cosmo}$

Need for an inhomogeneous scenario!

$$\omega_{\phi}\equivrac{P_{\phi}}{
ho_{\phi}}\qquad\qquad\omega_{\phi}(a)pprox\omega_{\phi}^{0}+(1-a)\omega_{\phi}^{a}$$

Observational constraints: Dark Fluid parameters

•
$$\Omega_{\phi}^{0} = 1.005 \pm 0.006$$

•
$$\omega_{\phi}^{0} = -0.80 \pm 0.12$$

•
$$\omega_{\phi}^{a} = 0.9 \pm 0.5$$

A. Arbey, astro-ph/0506732 - A. Arbey, Open Astron. J. 1, 27

(日)

臣

Towards Unification Unifying Scalar Field

Unifying Scalar Field (1)

Complex Scalar Field

•
$$\mathcal{L} = g^{\mu\nu} \partial_{\mu} \phi^* \partial_{\nu} \phi - V(\phi)$$

Tentative potentials:

•
$$V(\phi) = m^2 |\phi|^2 + \alpha |\phi|^{-\beta}$$

•
$$V(\phi) = m^2 |\phi|^2 + \alpha \exp(-\beta |\phi|)$$

•
$$V(\phi) = m^2 |\phi|^2 + \alpha [\cosh(\beta |\phi|) - 1]^n$$

 $m^2 |\phi|^2$: responsible for the local scale behaviour The other term determines the cosmological behaviour

A. Arbey, Phys. Rev. D 74, 043516

・ロ・ ・ 四・ ・ 回・ ・ 日・

크

Towards Unification Unifying Scalar Field

Unifying Scalar Field (2)

Promissing potential:

$$V(\phi) = m^2 |\phi|^2 + A e^{-B|\phi|^2}$$

- *m* fixed by galaxy scales: $m \sim 10^{-23}$ eV
- *B* fixed by cluster scales: $B \approx 10^{-22} \text{ eV}^{-2}$
- A fixed by cosmological scales: $A \approx \rho_0^{dark \ energy}$

A. Arbey, Phys. Rev. D 74, 043516

・ロト ・日 ・ ・ ヨ ・

3

Towards Unification Unifying Scalar Field

Cosmological Behaviour

Towards Unification Unifying Scalar Field

Cosmological Behaviour

Towards Unification Unifying Scalar Field

Local Behaviour

Correct behaviour at galactic scales

Alexandre Arbey Unifying Dark Fluid

< ∃⇒

臣

Towards Unification Unifying Scalar Field

Quantum Corrections

Coupling to fermions?

$$\mathcal{L}_{\textit{fermion}} = ar{\Psi}^{\dagger}(x) [i \gamma^{\mu}
abla_{\mu} - \gamma^5 m_{\it f}(\Phi)] \Psi(x)$$

Effective potential (effective field theory approach):

$$V_{1-loop}(\Phi_{cl}) = V(\Phi_{cl}) - \frac{\Lambda_{f}^{2}}{8\pi^{2}}[m_{f}(\Phi_{cl})]^{2}$$

with Λ_f : momentum cutoff

(日)

臣

Quantum Corrections

Coupling to fermions?

$$\mathcal{L}_{\textit{fermion}} = ar{\Psi}^{\dagger}(x) [i \gamma^{\mu}
abla_{\mu} - \gamma^5 m_{\!f}(\Phi)] \Psi(x)$$

Effective potential (effective field theory approach):

$$V_{1-loop}(\Phi_{cl}) = V(\Phi_{cl}) - \frac{\Lambda_{f}^{2}}{8\pi^{2}}[m_{f}(\Phi_{cl})]^{2}$$

with Λ_f : momentum cutoff

Quantum-resistivity condition: $m_f(\Phi_{cl}) = m_f^0 + \delta m_f(\Phi_{cl})$ For $\Lambda_f \approx 10^{-3} \text{ M}_{Planck}$ and $m_f^0 \approx 100 \text{ GeV}$: $\delta m_f(\Phi_{cl}) \ll 10^{-79} \text{ GeV}$ <u>OR</u>: $\delta m_f(\Phi_{cl}) \propto |\Phi_{cl}|^2$ or $\delta m_f(\Phi_{cl}) \propto \exp(-B|\Phi_{cl}|^2)$

Severely restricted!

Conclusions and Perspectives

Many Constraints on these models

- Constraints on the matter behaviour
- Constraints on the dark energy behaviour
- Inhomogeneous modeling: local vs. large scales
- Quantum behaviour/coupling to fermions?

Perspectives

- Scalar field dark fluid: Structure formation scenario
- Scalar field dark fluid: finding an adequate potential
- Relations with quantum field theory, quantum gravity, brane theories?
- Triple unification: dark energy + dark matter + inflaton?